
Robust and Unobtrusive Marker Tracking on Mobile Phones

Daniel Wagner1, Tobias Langlotz2, Dieter Schmalstieg3

Graz University of Technology

ABSTRACT
Marker tracking has revolutionized Augmented Reality about a
decade ago. However, this revolution came at the expense of
visual clutter. In this paper, we propose several new marker
techniques, which are less obtrusive than the usual black and
white squares. Furthermore, we report methods that allow tracking
beyond the visibility of these markers further improving
robustness. All presented techniques are implemented in a single
tracking library, are highly efficient in their memory and CPU
usage and run at interactive frame rates on mobile phones.

KEYWORDS: marker tracking, pixel flow, mobile phones

INDEX TERMS: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems – Artificial, augmented, and
virtual realities; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis – Tracking

1 INTRODUCTION
Although there has been much work on Augmented Reality (AR)
tracking from natural features, these techniques are commonly
less robust and require much more processing resources than
tracking from markers. In particular, when using mobile phones as
a platform for AR, computing power is an order of magnitude
smaller than on desktop computers, and this ratio is not likely to
change soon because of inherent limitations of the battery
technology powering the phone’s CPU.

Despite the obvious shortcomings of marker based tracking,
most noteworthy the visual pollution of the environment, there is
a proliferation of successful academic and commercial projects
relying on fiducial markers. In particular when developing
practical (and foolproof!) AR applications for mobile phones,
marker-based tracking seems to provide the best trade-off between
computational feasibility and robustness. Moreover, markers
containing digital barcode patterns can not only be used for pose
tracking, but also to uniquely distinguish thousands of objects or
even provide unique pointers to online resources such as web
pages or 3D content to be displayed on the phone. Providing the
equivalent capabilities from purely natural features would require
not only implementing a pose tracking system, but also a reliable
object detection system, all under stringent real-time constraints.

We were therefore motivated to extend our previous work on
marker-based tracking for mobile phones [15] with new features
that are designed to overcome the most severe limitations of
previous approaches, without sacrificing the robustness and
overall low computational complexity. Specifically, we describe
three new marker designs that occupy significantly less space and
therefore reduce the amount of visual pollution in the augmented

area.
We also describe two computationally inexpensive techniques

based on feature following and pixel flow, which can be used for
incremental tracking in cases where the marker is partially
occluded or out of sight. Together, space-economic marker
designs and incremental tracking allow placing markers in
situations that were previously not really feasible, or at least very
cumbersome to instrument. All techniques have been
implemented to run in real time on current mobile phones and can
be combined to make the use of markers significantly more
flexible and less painful.

2 RELATED WORK
Probably the first marker tracker developed for AR was
Rekimoto’s Matrix Code [5]. It pioneered the use of square planar
shapes for pose estimation and embedded 2D barcode patterns for
distinguishing markers. Later Kato used a similar approach in
ARToolKit [3], which was released as open source and
consequently became enormously popular among AR researchers
and enthusiasts alike. Since then many similar systems emerged,
of which Fiala’s ARTag [1] and Rekimoto’s Cybercode [6] are
most well known.

Compared to the vast number of marker tracking systems
available on desktop computers, only few solutions for mobile
phones have been reported in literature. In 2003 our group ported
ARToolKit to Windows CE and thus created the first self-
contained AR application [12] on an off-the-shelf embedded
device. This port later evolved into the ARToolKitPlus tracking
library [11]. In 2004 Möhring [4] created a tracking solution for
mobile phones that tracks color-coded 3D marker shapes. Around
the same time Rohs created the VisualCodes system for
smartphones [7]. Both Möhring’s as well as Rohs’ techniques
provide only simple tracking of 2D position on the screen, 1D
rotation and a very coarse distance measure. In 2005 Henrysson
[2] created a Symbian port of ARToolKit, partially based on the
ARToolKitPlus source code. In 2007 Rohs created a software for
Symbian phones that tracks maps, which are outfitted with regular
grids of dots, again tracked with 2.5 DOF [8]. The dot markers,
presented in section 3.4 are similar, but provide full 6DOF
tracking.

3 UNOBTRUSIVE MARKER TRACKING
Albeit still popular, the techniques used in the original ARToolKit
[3] become dated, as new more efficient techniques are being
developed. We therefore stopped the work on ARToolKitPlus
[11] and started developing Studierstube Tracker, a new marker
tracking library developed from scratch to optimally support
mobile phones. The most important aspect of the new library is
that it uses a modular computer vision pipeline, making it easy to
plug in alternative implementations of specific stages, and that all
available algorithms have been carefully tuned to use only a
minimum of computational bandwidth. After working on better
performance and robustness we turned to developing less
obtrusive markers, which are explained in this section.

1e-mail: wagner@icg.tugraz.at
2e-mail: langlotz@icg.tugraz.at
3e-mail: schmalstieg@icg.tugraz.at

3.1 Background and overview
Studierstube Tracker currently supports 6 different marker

types (including those 3 described in this paper), 2 different pose
estimators and 3 different thresholding algorithms, that all have
their specific strengths and weaknesses. Memory requirements are
one order of magnitude lower than with ARToolKitPlus and are
typically in the range of 150Kbyte. The main steps of Studierstube
Tracker using square markers with 2D barcodes as described in
[15] are summarized for convenience (see Figure 2):

1. Adaptive thresholding into binary image
2. Detect closed contours in image by scanning for

black/white edges and follow contour in image
3. Detect corner points of a rectangle from contours; check if

there are exactly 4 corners
4. Estimate homography
5. Unwarp marker interior using homography and sample 2D

barcode from a regular grid
6. Decode digital id from recovered 2D barcode
7. If id is valid, compute camera pose from homography

Studierstube Tracker supports digitally encoded ids with
forward error correction (Bose/Chaudhuri/Hocquenghem) in the
style of ARTag, but has more flexibility in the structure and
layout of the digital code. This allows to encode a large amount of
information – for this purpose, Studierstube Tracker supports the
DataMatrix barcode standard (ISO/IEC16022), which can store up
to 2KB of data. However, in many typical AR applications, only a
handful of markers must be distinguished. If the marker must
encode only a few bits, it is sensible to reduce the area covered by
the marker, leaving a larger portion of the interaction space
untouched.

Three designs for such less obtrusive markers, frame markers,
split markers and dot markers are presented in this section, while
the next sections explain how tracking can be continued
incrementally if the marker is lost.

3.2 Frame markers
Robustness of marker tracking is largely owed to the high

contrast afforded by the black frame in a thresholded image. The
frame itself is not disturbing in many situations, if the interior can
be filled with application specific artwork, like a framed painting.
With frame markers we therefore take the approach of encoding a
digital id with error correction at the interior side of the frame,
making it appear like a frame decoration (see 2nd image in Figure
1 and left image in Figure 4). Compared to regular black/white
markers (see left marker in Figure 1), frame marker only sample
the marker interior area differently (step 5 in the list above), while
the rest of the tracking pipeline remains unmodified.

Frame markers have turned out to be highly attractive for
branding, since companies can place a logo inside the marker, and
are therefore currently used in commercial projects. Note that the
original ARToolKit allowed arbitrary marker interior identified by
template matching, but was easily confused by high frequencies in
such images, which made this approach rather poor in practice
[14]. Frame markers do not require any interior at all and can

therefore be put around existing flat objects such as pictures on a
wall.

Marker invalid Marker
valid

Square
marker

Split
marker

Dot
marker

Get pose from
homography
and refine

Homography
chaining

Planar feature
following

Pixel flow

Unique
Not unique

Treshold
Contour finding

Shape finding
Marker setup

Shape finding
Marker setup

Shape finding
Marker setup

Homography estimation
Marker unprojection

Marker decoding

Feature detection

Pixel flow
by template matching

Estimate
incremental pose

Pose

Pixel flow
from features

Figure 2: The tracking pipeline can be configured to three options

for unobtrusive marker tracking – shape, split, or dot markers. If the
marker tracking fails because the marker is occluded or clipped,

incremental tracking based on either planar feature tracking or pixel
flow can be applied to continue tracking without markers.

The width of the squares was set to match the width of the
border, so the size of the squares can directly be determined after
the border has been identified. The gap between adjacent squares
is computed by evenly distributing the remaining space between
adjacent squares. Depending on the width of the squares relative
to the overall marker size, the gap can be chosen to vary from 0 to
about the width of the border. A gap of 0 makes the identification
more robust, because the squares have maximum size in the
image. However, smaller squares are more decorative and less
obtrusive.

A 36 bit code including 27 bit redundancy is encoded alongside
each of the 4 sides of the frame, in the form of 9 individual black
or white squares encoding 1 bit each (9bit = 512 different
markers). The code is arranged in clockwise order, and is chosen
in a way so that only one of the 4 possible corners yields a valid
code without errors. This allows determining the code as well as
the correct orientation of the marker.

Figure 1. Left: regular black/white marker, 2nd to 4th images: layout of frame markers, split markers and dot markers.

3.3 Split markers
 While frame markers still contain a closed border that defines the
marker area, split markers are composed of two separate
barcodes, which further reduces the occupied area. These split
markers are inspired by Sony’s Eye of Judgment game
(www.eyeofjudgement.com), which uses a similar design. Eye of
Judgment markers contain four green triangles that are used to
perform the actual tracking. The barcode is then detected and read
relative to these triangles. In contrast, the split markers described
in this paper do not require any structure in the marker interior,
and do not rely on the use of colors. Instead, we directly track the
two barcodes, which define the marker geometry as well as its id.
Compared to typical rectangular markers (such as frame framers),
split markers use a different rectangle fitting algorithm and
sample the marker area differently (steps 3 and 5 of the list
above).

Figure 3. Barcode of a split marker. If “bad corner” was detected

as C4, the sampling would fail due to wrong sampling coordinates.

After employing the standard contour finder also used for
square markers, the dominant direction of the elongated candidate
contours is determined using perpendicular line regression (red
line in Figure 3). The intersection of the contours with the line
through the contour’s centroid M in the direction of the
perpendicular line regression yield the left and right border points
B1 and B2 of the barcode. The 4 outer corners C1-C4 of the
barcode are estimated by the following heuristic: Construct
D1=1/8M+7/8B1 and D2=1/8M+7/8B2; find C1 and C4 along the
contour starting from B1 at the maximum distance from D1; find
C2 and C3 along the contour starting from B2 at the maximum
distance from D2.

Once the corners are known, the barcode is sampled by setting
up a 2x13 regular sampling grid: The outer row of samples must
be all black. 2 samples each to the left and right hand side of the
inner row must be verified to be black. This design is necessary to
reliably detect C1 to C4 in the previous step. The inner 9 samples
(see 3rd picture in Figure 1) encode a 6 bit id plus a 2 bit
checksum to improve robustness. Checksum and id can never be
completely black simultaneously, so the inner and outer side of
the barcode cannot be confused – a valid barcode cannot be a
solid rectangle. The 9th bit is added to distinguish between the

upper and lower barcode of one marker. A single point sample
without any filtering is sufficient in practice for high performance
and low error rates. Contours that do not pass any of the above
tests are discarded.

Finally, the algorithm searches for pairs of matching barcodes
with opposite orientation bits. If such a pair is found, the two sets
of corners {C1, C2} from both barcodes are used to construct a
rectangle. The camera pose relative to the marker is computed
from the homography of this rectangle.

Similar to frame markers, the interior area is not taken into
account for tracking and can therefore be chosen arbitrarily. Since
only two of the four sides of the marker contain features required
for tracking, one can conveniently hold a marker in the hand with
the thumb covering part of the marker, without affecting the
tracking (see middle picture in Figure 4).

3.4 Dot markers
The previous two marker types are well suited for tracking of
small objects such as cards with minimum obtrusion, but are less
suitable for covering larger areas, due to the increased visual
clutter resulting from placing multiple markers in it.

Most often markers are deemed undesirable since they cover
underlying objects or images. It is therefore preferable to reduce
the area covered by artificial markings as much as possible, and
instead make use of the already existing natural features.

This hybrid approach of minimal markings, which make the
analysis of natural texture fast and robust, was taken with the dot
markers (see right picture in Figure 4). A dot marker consists of a
two-dimensional grid of black circular dots with white
surrounding rings, superimposed on a textured flat surface, similar
to the design described in [8]. The original texture enclosed by
four dots is interpreted as a grid cell, and the appearance of all
these grid cells is precomputed to rapidly and reliably identify a
particular grid cell. Compared to regular black/white markers, dot
markers use different steps 3 (circle instead of rectangle fitting)
and steps 5 (marker detection).

The precomputation samples each grid cell to a 32x32 grayscale
pattern, which is indexed to associate the pattern with the position
of the cell. At runtime, a low threshold value (typically at a 3%
level in the intensity histogram) is selected, and closed black
contours are extracted. For performance reasons, a standard test
for elliptical shape of a contour is replaced by computing the
minimum and maximum distance of all contour points from the
centroid, and requiring a maximum/minimum ratio of less than 3
to pass. Moreover, the interior of candidate dots is checked to
only contain black pixels.

The next step aims to identify groups of 4 dots which form a
grid cell. Since there is a large number of possible combinations,
including contours falsely identified as dots, it is important to
quickly reject incorrect combinations.

Figure 4. frame markers (left), split markers (middle) and dot markers (right) used on mobile phones.

As a first step, the dot positions (taken to lie at the contour
centroid) are corrected for lens distortion, since we require
accurate positions for later tests. A matrix of distances between all
dots is created, to quickly find nearest neighbors.

Unlike rectangular markers designs, which are considered in
isolation, the dot grid allows to work with the hypothesis that 3 or
more collinear dots form a line of the grid. Lines are constructed
by connecting dots with their nearest neighbors. Lines are merged
by testing every dot for lying on every line, and then sorted by the
number of dots they contain.

Lines are then clustered into sets with similar angle in image
space, in order to find parallel lines. Finally, the cross product of
the line sets is generated. Intersecting pairs of lines from the sets
creates the points that form the candidate grid cells. Most
candidate grid cells can be rejected quickly using the following
hierarchy of tests:

• An intersection lies outside the camera image
• An intersection point is too far from the next dot
• Intersecting lines create duplicate points in roughly the same

location
• The grid cell is not convex
• The grid cell’s area is too small
• The ratio of the sums of opposite edges of a (square) grid cell

is not close to 1; in practice we set a threshold of 2.2
• Angles of two adjacent edges of a grid cell must be in the

interval [45°,145°] (we do not allow too oblique viewing
angles, since the image becomes too distorted to be useful)

• If the edges e1 and e2 adjacent to a point form a right angle
(90°±20°) and length(e1)≥length(e2), then e1/e2 must be ≤1.5.

Grid cells that pass all conditions above are then tested using
template matching. The matching starts with the cell with the
largest area, which is assumed to provide the best matching result.
The cell’s content is unwarped at 65x65 pixels using a
homography computed from its corner points. The resulting
pattern is downscaled to 32x32 using a 3x3 Gauss kernel.
Furthermore, a low resolution version at 8x8 pixels is created. The
image patch is then checked in all four 90° rotations against all
patterns in the database using normalized cross correlation. The
comparison starts with the 8x8 resolution and proceeds to the
more expensive test at 32x32 only if the matching at 8x8 exceeds
a threshold.

If a grid cell was successfully detected, its offset in the grid is
determined and used for estimating the 6DOF of the camera pose
relative to the grid. Nonlinear optimization of the camera pose is
performed using standard Gauss-Newton iteration.

4 INCREMENTAL TRACKING
Each of the marker technologies presented in the previous chapter
tries to minimize the visual clutter by reducing the size of
artificial features. Yet, none of these approaches is able to track
completely from natural features without previous training. While
dot markers can track over large areas with minimal obtrusion, the

tracking target must be provided in advance. However, in practice
tracking at least temporarily from unknown environments is very
desirable since users can usually not be constrained to always
point the camera straight to the marker or refrain from occluding
dots and other marker features.

In the following, we present two computationally inexpensive
approaches to support marker based global localization with
incremental tracking from untrained natural features. Both
techniques have been successfully implemented on cell phones at
interactive frame rates, and can extend the usability of markers
well beyond their original purpose: If markers are temporarily lost
or occluded, the incremental tracking fills in the gap until a
marker is reacquired.

4.1 Incremental tracking using feature following
In many applications markers are placed on a planar surface of
interest that shall be augmented by the AR application. Hence
there is usually texture around the marker that can be used for
natural feature tracking. We exploit this fact by combining marker
tracking with a feature following approach operating in a plane.
As long as the marker is visible, it is treated as ground truth, and
features around the marker are extracted, but not used. Since we
assume that features lie in the same plane as the marker, their 3D
location can directly be computed from the marker tracking. As
soon as the marker tracking fails, the tracker matches the features
of the current frame against those of the previous frame via
template matching, and begins tracking incrementally.

Figure 6. Flow vectors of features matched from the previous

frame (added for illustration only). Corners without a line could not
be matched. The embedded marker (left bottom) is not sufficiently

visible for tracking anymore.

Candidate feature detection is performed using the FAST corner
detector [9], which turned out to deliver high performance rates
on phones (~8ms at 320x240 on a 400Mhz ARM CPU). For each
candidate, an 8x8 patch is extracted and blurred using a 3x3 Gauss
kernel. The blurring increases robustness against pixel offsets
introduced by inaccurate corner detection and small affine

Figure 5: Incremental tracking over 400 frames (~20 seconds): 1st image (frame 17): pose estimated from marker,

2nd image (frame 53): incremental tracking takes over, 3rd image (frame 86): tracking still accurate,
4th image (frame 164): drift becomes obvious, 5th image (frame 381): tracking is completely off.

transformations. To quickly match a candidate against a previous
frame, active search in a 25x25 pixel search neighborhood is used.
All features from the previous frame are inserted into a 4x4 search
grid of the 320x240 image that provides an almost linear search
time. Candidates for matching are tested using sum of absolute
differences (SAD) and ranked. If the highest ranked match for a
candidate exceeds a certain threshold, it is treated as positive
match (see Figure 6).

From the matched n point pairs, 4 features are chosen to
combine an initial estimate of the homography from the last frame
to the current frame. Unfortunately, we have found that using a
standard approach such as RANSAC to select the 4 features is too
expensive for phones. Instead, a simple algorithm is performed to
indentify suitable (sufficiently distant, non-collinear) features:

1. Compute the dominant orientation of the features using the
line of perpendicular regression

2. Sort the n features along the line and select two features at
each end of the interval, i. e., with indices {1, 2}, {n-1, n}

3. Sort the n features perpendicular to the line and select two
features at each end of the interval, i. e., with indices {1,
2}, {n, n-1)

4. Compute all 24=16 homographies given by selecting one
point from each of the 4 sets identified in steps (2)+(3).
The rationale of this approach is that among the 16
combinations, which are selected to represent extremal
positions in the 2D point cloud of features, it is very likely
that at least one combination is suitable.

5. Select the best homography from the 16 candidates, for
which the largest number from all n features have a
reprojection error smaller than a given threshold. Features
with a larger reprojection error are removed as outliers in
the same step.

6. If no homography with a sufficient number of inliers can
be found, the homography is instead extrapolated from the
previous one using double exponential smoothing
prediction [16], which is less computationally expensive
than the usual Kalman filter.

The selected homography is then refined by minimizing the
projection error of all inliners using a Gauss-Newton least-squares
fitting process. Finally, the camera pose estimate is updated via
homography chaining: The homography of the frame-to-frame
correspondence is applied on top of the homography from the
previous frame. The pose is then calculated from the updated
homography. A similar approach has been described by Simon et
al. [10].

Naturally, the approach only works as long as at least 4 suitable
points can be matched from one frame to the next. In practice,
many more points are required for accurate results. Measurement
errors inevitably accumulate, so the estimated pose drifts. In
practice acceptable tracking can be provided for about 3-10
seconds, depending on the amount of camera movement and error
to be tolerated. This is sufficient in many situations to continue
tracking when the marker is lost by an unintended movement of
the user. Obviously, the homography-based approach works only
for planar or nearly planar environments; in practice this covers
most table-top and wall-mounted environments.

4.2 Incremental tracking using pixel flow
Incremental tracking of orientation with inertial sensors has been
shown to be highly useful for AR applications to either improve
tracking robustness, or as a fallback when no other tracking
approach is available. While most of today’s mobile phones do
not have inertial sensors, their built-in camera can be used in a
similar way using pixel flow detection [13].

Our pixel flow detector is intended for augmenting a panoramic
view of the environment. A marker is used for initially
determining the current global location and viewing direction.
Then the user is free to turn around observing the augmentations,
while remaining in the same location.
We apply two different approaches to pixel flow – a more
accurate method is tried initially for slow and medium camera
movements. If it fails because of fast camera movement, a second,
more robust method is used.

The accurate pixel flow tracker uses the same feature following
approach as described in section 4.2. All feature flow vectors are
inserted into a 2D histogram that encodes the image’s movement
in X- and Y-direction. The histogram has a size of 32x32 bins and
can therefore detect movements of up to ±15 pixels. To detect the
dominant pixel flow, the histogram is searched for local maxima.
The pixel flow in the overall image is finally estimated as a
weighted sum of the maximum and its neighboring values in the
histogram.

If a second local maximum with a value of more than 60% of
the absolute maximum is found, the algorithm assumes a failure
and repeats the step with a version of the image scaled down by
50%. Downscaling suppresses noise and hence increases
robustness, but also doubles the effective range of the flow
detection.

Figure 7. Flow vectors from feature matching.

If no pixel flow can be successfully determined within 3 levels
of the image pyramid, a second approach for estimating the pixel
flow is tried, which is yet more robust, but less accurate. This
approach is based on template matching, which is more
commonly used for estimating the optical flow of images [13].

Our version of template matching re-uses the 3-level image
pyramid (levels 0-2) already computed at this point for an
efficient hierarchical approach and adds a forth level (level 3).
This new level is subdivided into 2x2 regions. In each region, a
patch of 8x8 pixels is extracted (see red squares in Figure 8). The
patches are checked for sufficient texture using SAD of every
patch pixel from the average intensity of the patch. Regions with
sufficient texture are exhaustively compared with SAD in a 17x13
search window. The resulting flow vector is estimated at sub-pixel
accuracy by fitting a parabola to a 3x3 neighborhood around the
best fit.

Since a pure rotation model is assumed, a single motion vector
valid for the whole image is expected. Hence, the estimated
motion vectors are averaged and forwarded to the next lower level
of the image pyramid as a starting point to limit the search area.
At pyramid level 2, 4x4 patches are extracted and searched in a
3x3 neighborhood around the position predicted at level 3. The

procedure is repeated at pyramid level 1 using 8x6 regions
covering the rectangular image. Level 0 (full resolution) is not
searched to limit computational requirements. Table 1 summarizes
the search parameters at the 3 levels.

pyramid level 1 2 3

scale factor 1/2 1/4 1/8

image resolution 160x120 80x60 40x30
patch size 8x8 8x8 8x8

patch size (relative) 16x16 32x32 64x64
region subdivision 8x6 4x4 2x2

region size 20x20 20x15 20x15
region size (relative) 40x40 80x60 160x120

search window 3x3 3x3 17x13

Table 1: Overview of the image pyramid levels used in the
template based search for pixel flow computation
(assuming a base image size of 320x240 pixels).

In practice, the corner tracking method turns out to be much
more accurate than the template matching. However, template
matching is more robust under fast camera movement, which
often results in images that are too blurred for corner detection.
While in most cases, the first method works fine, the second
method provides a robust fall back for extreme conditions.

Figure 8. Areas for region-based matching. In the first iteration,

the 4 large red areas, then the 16 yellow and finally the 48 blue
areas are matched.

The 2D pixel flow is finally interpreted as rotational motion
based on the intrinsic camera parameters. The accumulated
rotational offset is then applied on top of the last known absolute
pose.

5 EVALUATION
We tested the described methods on an Asus M530W Windows
Mobile smartphone. This phone was selected for its CPU, which
is clocked at 400MHz (phones currently use CPUs clocked from
200-600MHz) and for its high quality camera, which delivers 25
frames per second.

Table 2 shows the timings of the three proposed marker
tracking methods. Naturally, thresholding is independent of the
applied marker mode. Shape detection of split markers is slightly
slower than for frame markers due to their more complex shape.
Split markers take more time for marker detection since each
marker consists of two parts and hence requires calculating 2
homographies for unprojection (plus another one for pose
estimation).

Dot markers require to spend much time in filtering out non-
circular structures at the shape detection stage. The marker
detection stage includes the detection of the dot-grid as well as
unprojecting candidates and matching them against the database
of templates. Altogether this makes dot markers about 2 times
slower than rectangular markers.

 Split marker Frame marker Dot marker

Thresholding 0.9ms 0.9ms (0.9ms) 0.9ms (0.9ms)
Fiducial

Detection 1.6ms 1.4ms (1.4ms) 3.9ms (2.8ms)
Marker

Detection 3.1ms 1.8ms (0.0ms) 3.6ms (0.0ms)

Pose
Estimation 0.9ms 0.7ms (0.7ms) 0.6ms (0.4ms)

Overall 6.5ms 4.8ms (3.0ms) 9.0ms (4.1ms)

Table 2. Benchmarks of the proposed marker tracking methods.
Values in parentheses are for slow camera movement.

Table 2 presents an overview of average timings obtained by
tracking the target for about 15 seconds (~400 frames). The values
in parentheses present timings for a slow moving camera (or
marker). In this case the tracker is able to redetect the marker
without executing the full pipeline. Generally, if circles or corners
of square markers are redetected at close positions compared to
the last frame, the tracker can use the new positions directly for
pose estimation, using the last frame’s pose as a starting point for
refinement.

The incremental tracker as described in section 4.1 runs in two
modes: When marker tracking succeeds, it only detects corners
and harvests patterns. As Table 3 shows, in this mode most of the
time is spent in the corner detector. As soon as the marker is lost,
the incremental tracker additionally matches the new patches
against those of the previous frame and estimates the homography
for chaining.

 Corner
Detection

Corner
Tracking

Homography
+ Pose Overall

Marker
Detected 8.1ms 1.6ms 0.0ms 9.7ms

Marker
Undetected 8.1ms 2.3ms 2.7ms 13.1ms

Table 3. Benchmarks for Incremental tracking using feature
following (as described in section 4.1)

While the speed of the methods mentioned above is mostly
independent of image properties, the speed of the incremental
tracker using pixel flow depends on many factors, including the
number of corners detected, the repeatability of the extracted
features, and especially on the speed of the camera movement,
which determines how many levels of the image pyramid have to
be created and checked. Our measurements show that the pixel
flow timings vary between 8 and 14 milliseconds.

6 APPLICATION EXAMPLE
As an example application we developed a prototype of a

simple mobile guidance system for indoor and outdoor usage that
helps a user find his way on our University campus. The
application combines marker based localization with pixel flow
tracking when the marker is not visible anymore.

The indoor system uses frame markers (see left image in Figure
9) that can be tracked by the application, but are also well
readable for people not using the guidance system. The
application knows the position of all frame markers in the

building. Hence, due to the marker’s fixed position in the building
it provides global orientation as well as location to the system.

Figure 9: Indoor guidance marker (left) and campus map (right)

We refrained from mounting markers outdoors, but instead rely
on users to have a map of the campus that is prepared for tracking
using the dot marker approach (see right image in Figure 9). The
mobile phone detects the map as a marker and overlays it with a
textured 3D model of the campus buildings (see left image in
Figure 10). Adding the virtual buildings helps the user to orient
himself better than from the orthographic map alone.

Since the map has no fixed location, it can neither provide
position nor orientation without any further input: The user has to
rotate the map so that it aligns with the real world. The application
provides a virtual laser pointer (at the center of the screen) that
allows the user to point to current position on the map. Together
with the corrected orientation the user hereby full calibrates the
marker in 6DOF.

Figure 10: Augmented campus map (left) and cafeteria (right).

Starting with a frame marker or the registered map, the user can
then rotate the phone horizontally and vertically away from the
marker while the pixel flow tracker updates the orientation
estimation. The guidance system overlays virtual labels on top of
the real world (see right image in Figure 10) to help the user
finding his way.

7 DISCUSSION AND FUTURE WORK
We have presented a toolkit of new marker tracking techniques
running in real-time on off-the-shelf mobile phones. The marker
designs produce less image clutter than previous designs, and
more easily blend into typical AR environments. By using
incremental tracking based on planar feature following or
hierarchical pixel flow, situations with occlusions or rapid
movements that were difficult to accommodate with previous
marker tracking can now be handled with ease. The primary
advantages of marker based tracking, in particular its reliability
and the built-in object detection capability remain unchanged.

In future we plan to extend the incremental tracker based on
planar feature following with true localization and mapping,
creating a kind of a “Poor man’s SLAM”. Such an approach will
map the marker’s environment and therefore not suffer from drift.

However, this approach requires improved feature matching
method that can tolerate larger affine changes.

ACKNOWLEDGEMENTS
This project was funded in part by Austrian Science Fund FWF

under contracts Y193 and W1209-N15, as well as the European
project FP6-2004-IST-4-27571. We would like to thank Gerhard
Reitmayr for his valuable comments.

REFERENCES
[1] Fiala, M., ARTag, An Improved Marker System Based on

ARToolkit. NRC Canada, Publication Number: NRC: 47419, 2004
[2] Henrysson, A., Billinghurst, M, Ollila, M.. Face to Face Collabora-

tive AR on Mobile Phones. Proceedings International Symposium on
Augmented and Mixed Reality (ISMAR'05), pp. 80-89, 2005

[3] Kato, H., Billinghurst, M., Marker Tracking and HMD Calibration
for a video-based Augmented Reality Conferencing System,
Proceedings of the 2nd International Workshop on Augmented
Reality (IWAR 99). pp. 85-94, 1999

[4] Möhring, M., Lessig, C., Bimber, C.. Video See-Through AR on
Consumer Cell Phones. Proceedings of International Symposium on
Augmented and Mixed Reality (ISMAR'04), pp. 252-253, 2004

[5] Rekimoto, J., Matrix: A Realtime Object Identification and
Registration Method for Augmented Reality. Proceedings of Asia
Pacific Computer-Human Interaction (APCHI), pp. 63-68, 1998

[6] Rekimoto, J., Ayatsuka, Y.. CyberCode: designing augmented reality
environments with visual tags. Proceedings of Designing Augmented
Reality Environments (DARE) 2000, pp. 1-10, 2000

[7] Rohs, M., Gfeller, B., Using Camera-Equipped Mobile Phones for
Interacting with Real-World Objects. Advances in Pervasive
Computing, Austrian Computer Society (OCG), pp. 265-271, 2004

[8] Rohs, M, Schöning, J., Krüger, A., Hecht, B., Towards Real-Time
Markerless Tracking of Magic Lenses on Paper Maps, Adjunct
Proceedings of the 5th International Conference on Pervasive
Computing (Pervasive), Late Breaking Results, pp. 69-72, 2007

[9] Rosten, E., Drummond, T., Machine learning for high-speed corner
detection, Proceedings of 9th European Conference on Computer
Vision (ECCV 2006), pp. 430-443, 2006

[10] Simon, G., Fitzgibbon, A.W., Zisserman, A., Markerless Tracking
Using Planar Structures in the Scene, Proceedings of International
Symposium on Augmented Reality (ISAR 2000), pp. 120-128, 2000

[11] Wagner, D., Schmalstieg, D., ARToolKitPlus for Pose Tracking on
Mobile Devices, Proceedings of 12th Computer Vision Winter
Workshop (CVWW'07), pp. 139-146, 2007

[12] Wagner, D., Schmalstieg, D.. First Steps Towards Handheld
Augmented Reality. Proceedings of the 7th International Conference
on Wearable Computers (ISWC 2003), pp. 127-135, 2003

[13] Wang, J., Zhai, S., Canny, J, Camera Phone Based Motion Sensing:
Interaction Techniques, Applications and Performance Study, In
Processding of ACM UIST 2006, pp. 101-110, 2006

[14] Charles Owen, What is the Best Fiducial. Proceedings of the 1st
ARToolKit Workshop, 2002.

[15] Schmalstieg, D., Wagner, D., Experiences with Handheld
Augmented Reality, The Sixth IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR'07), 2007

[16] LaViola, J., Double Exponential Smoothing: An Alternative to
Kalman Filter-Based Predictive Tracking, Proceedings of the
workshop on Virtual environments 2003, pp. 199-206, 2003

