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ABSTRACT 
Marker tracking has revolutionized Augmented Reality about a 
decade ago. However, this revolution came at the expense of 
visual clutter. In this paper, we propose several new marker 
techniques, which are less obtrusive than the usual black and 
white squares. Furthermore, we report methods that allow tracking 
beyond the visibility of these markers further improving 
robustness. All presented techniques are implemented in a single 
tracking library, are highly efficient in their memory and CPU 
usage and run at interactive frame rates on mobile phones. 
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1 INTRODUCTION 
Although there has been much work on Augmented Reality (AR) 
tracking from natural features, these techniques are commonly 
less robust and require much more processing resources than 
tracking from markers. In particular, when using mobile phones as 
a platform for AR, computing power is an order of magnitude 
smaller than on desktop computers making marker-based tracking 
solutions the best trade-off between computational feasibility and 
robustness. Moreover, markers containing digital barcode patterns 
can not only be used for pose tracking, but also to uniquely 
distinguish thousands of objects or even provide unique pointers 
to online resources such as web pages or 3D content to be 
displayed on the phone. Providing the equivalent capabilities from 
purely natural features would require not only implementing a 
pose tracking system, but also a reliable object detection system, 
all under stringent real-time constraints. 

We were therefore motivated to extend our previous work on 
marker-based tracking for mobile phones [12] with new features 
that are designed to overcome the most severe limitations of 
previous approaches, without sacrificing the robustness and 
overall low computational complexity. Specifically, we describe 
three new marker designs that occupy significantly less space and 
therefore reduce the amount of visual pollution in the augmented 
area. 

We also describe two computationally inexpensive techniques 
based on feature following and pixel flow, which can be used for 
incremental tracking in cases where the marker is partially 
occluded or out of sight. Together, space-economic marker 
designs and incremental tracking allow placing markers in 
situations that were previously not really feasible, or at least very 

cumbersome to instrument. All techniques have been 
implemented to run in real time on current mobile phones and can 
be combined to make the use of markers significantly more 
flexible and less painful. 

2 RELATED WORK 
Probably the first marker tracker developed for AR was 
Rekimoto’s Matrix Code [4]. It pioneered the use of square planar 
shapes for pose estimation and embedded 2D barcode patterns for 
distinguishing markers. Later Kato used a similar approach in 
ARToolKit [2], which was released as open source and 
consequently became enormously popular among AR researchers 
and enthusiasts alike. Since then, many similar systems emerged, 
of which Fiala’s ARTag [1] is most well known. 

Compared to the vast number of marker tracking systems 
available on desktop computers, only few solutions for mobile 
phones have been reported in literature. In 2003 our group ported 
ARToolKit to Windows CE and thus created the first self-
contained AR application [10] on an off-the-shelf embedded 
device. This port later evolved into the ARToolKitPlus tracking 
library [9]. In 2004, Möhring [3] created a tracking solution for 
mobile phones that tracks color-coded 3D marker shapes. Around 
the same time, Rohs created the VisualCodes system for 
smartphones [5]. Both Möhring’s as well as Rohs’ techniques 
provide only simple tracking of 2D position on the screen, 1D 
rotation and a very coarse distance measure. In 2007, Rohs 
created a software for Symbian phones that tracks maps, which 
are outfitted with regular grids of dots, again tracked with 2.5 
DOF [6]. The dot markers, presented in section 3.3 are similar, 
but provide full 6DOF tracking. 

3 UNOBTRUSIVE MARKER TRACKING 
Albeit still popular, the techniques used in the original ARToolKit 
[2] have become dated, as new, more efficient techniques are 
being developed. We therefore stopped the work on 
ARToolKitPlus [9] and started developing Studierstube Tracker, a 
new marker tracking library developed from scratch to optimally 
support mobile phones [12].  

Studierstube Tracker currently supports 6 different marker 
types (including those 3 described in this paper), 2 different pose 
estimators and 3 different thresholding algorithms, that all have 
their specific strengths and weaknesses. Memory requirements are 
one order of magnitude lower than with ARToolKitPlus and are 
typically in the range of 150Kbyte.  

Studierstube Tracker supports digitally encoded ids with 
forward error correction (Bose/Chaudhuri/Hocquenghem) in the 
style of ARTag, but has more flexibility in the structure and 
layout of the digital code. This allows to encode a large amount of 
information – for this purpose, Studierstube Tracker supports the 
DataMatrix barcode standard (ISO/IEC16022), which can store up 
to 2KB of data. If the marker must encode only a few bits, it is 
sensible to reduce the area covered by the marker, leaving a larger 
portion of the interaction space untouched. 

Three designs for such less obtrusive markers, frame markers, 
split markers and dot markers are presented in this section, while 
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the next sections explain how tracking can be continued 
incrementally if the marker is lost. 

3.1 Frame markers 
Robustness of marker tracking is largely owed to the high 

contrast afforded by the black frame in a thresholded image. The 
frame itself is not disturbing in many situations, if the interior can 
be filled with application specific artwork, like a framed painting. 
With frame markers we therefore take the approach of encoding a 
digital id with error correction at the interior side of the frame, 
making it appear like a frame decoration (see left image in Figure 
1 and 1st picture in Figure 2). Frame markers do not require any 
interior at all and can therefore be put around existing flat objects 
such as pictures on a wall. 

A 36 bit code including 27 bit redundancy is encoded alongside 
each of the 4 sides of the frame, in the form of 9 individual black 
or white squares encoding 1 bit each (9bit = 512 different 
markers). The code is arranged in clockwise order, and is chosen 
in a way so that only one of the 4 possible corners yields a valid 
code without errors. This allows determining the code as well as 
the correct orientation of the marker. For both the frame maker 
and the split marker described later, the squares describing a bit 
should have a size of at least 2 pixels to be clearly identified. This 
is equivalent to existing marker based tracking techniques. 

3.2 Split markers 
While frame markers still contain a closed border that defines the 
marker area, split markers are composed of two separate 
barcodes, which further reduces the occupied area. We directly 
track the two barcodes, which define the marker geometry as well 
as its id. Compared to typical rectangular markers (such as frame 
framers), split markers use a different rectangle fitting algorithm 
and sample the marker area differently. 

After employing the standard contour finder also used for 
square markers, the dominant direction of the elongated candidate 
contours is determined using perpendicular line regression. The 
intersection of the contours with the line through the contour’s 
centroid M in the direction of the perpendicular line regression 
yield the left and right border points B1 and B2 of the barcode. The 
4 outer corners are constructed out of this border points.  

Once the corners are known, the barcode is sampled by setting 
up a 2x13 regular sampling grid: The outer row of samples must 
be all black. 2 samples each to the left and right hand side of the 
inner row must be verified to be black. This design is necessary to 
reliably detect the corner points in the previous step. The inner 9 
samples (see middle picture in Figure 1) encode a 6 bit id plus a 2 
bit checksum to improve robustness. The remaining bit out of the 
inner 9 bits is used to store the orientation. 
The algorithm searches for pairs of matching barcodes with 
opposite orientation bits. If such a pair is found, the outer corner 
points from both barcodes are used to construct a rectangle. The 
camera pose relative to the marker is computed from the 
homography of this rectangle. Since only two of the four sides of 

the marker contain features required for tracking, one can 
conveniently hold a marker in the hand with the thumb covering 
part of the marker (see 2nd picture in Figure 2). 

3.3 Dot markers 
The previous two marker types are well suited for tracking of 
small objects such as cards with minimum obtrusion, but are less 
suitable for covering larger areas, due to the increased visual 
clutter resulting from placing multiple markers in it. 

Most often markers are deemed undesirable since they cover 
underlying objects or images. It is therefore preferable to reduce 
the area covered by artificial markings as much as possible, and 
instead make use of the already existing natural features. 

This hybrid approach of minimal markings, which make the 
analysis of natural texture fast and robust, was taken with the dot 
markers (see right picture in Figure 1 and 3th picture in Figure 2). 
A dot marker consists of a two-dimensional grid of black circular 
dots with white surrounding rings, superimposed on a textured flat 
surface, similar to the design described in [6]. The original texture 
enclosed by four dots is interpreted as a grid cell, and the 
appearance of all these grid cells is precomputed out of the dotted 
map to rapidly and reliably identify a particular grid cell. Thereby 
the marker covers just 1% of the whole area. 

At runtime, a low threshold value (typically at a 3% level in the 
intensity histogram) is selected, and closed black contours with a 
diameter of 3 pixels are extracted.  The next step aims to identify 
groups of 4 dots which form a grid cell. Since there is a large 
number of possible combinations, including contours falsely 
identified as dots, it is important to quickly reject incorrect 
combinations using a variety of heuritics. 

Grid cells that pass all conditions by identifying 4 dots forming 
a grid cell are then tested using template matching. The matching 
starts with the cell with the largest area, which is assumed to 
provide the best matching result. The unwarped image patch is 
then checked in all four 90° rotations against all patterns in the 
precomputed database using normalized cross correlation. The 
comparison starts with the 8x8 resolution and proceeds to the 
more expensive test at 32x32 only if the matching at 8x8 exceeds 
a threshold. 

If a grid cell was successfully detected, its offset in the grid is 
determined and used for estimating the 6DOF of the camera pose 
relative to the grid. Nonlinear optimization of the camera pose is 
performed using standard Gauss-Newton iteration. 

4 INCREMENTAL TRACKING 
Each of the marker technologies presented in the previous chapter 
tries to minimize the visual clutter by reducing the size of 
artificial features.  
Yet, none of these approaches is able to track completely from 
natural features without previous training. However, in practice 
tracking at least temporarily from unknown environments is very 
desirable since users can usually not be constrained to always 

                                                     
  

Figure 1. frame markers (left), split markers (middle), and map with dot markers (right)  



point the camera straight to the marker or refrain from occluding 
dots and other marker features. 

In the following, we present two computationally inexpensive 
approaches to support marker based global localization with 
incremental tracking from untrained natural features. Both 
techniques have been successfully implemented on cell phones at 
interactive frame rates, and can extend the usability of markers 
well beyond their original purpose: If markers are temporarily lost 
or occluded, the incremental tracking fills in the gap until a 
marker is reacquired. 

4.1 Incremental tracking using feature following 
In many applications markers are placed on a planar surface of 
interest that shall be augmented by the AR application. Hence 
there is usually texture around the marker that can be used for 
natural feature tracking. We exploit this fact by combining marker 
tracking with a feature following approach operating in a plane. 
As long as the marker is visible, it is treated as ground truth, and 
features around the marker are extracted, but not used. Since we 
assume that features lie in the same plane as the marker, their 3D 
location can directly be computed from the marker tracking. As 
soon as the marker tracking fails, the tracker matches the features 
of the current frame against those of the previous frame via 
template matching, and begins tracking incrementally. 

Candidate feature detection is performed using the FAST corner 
detector [7], which turned out to deliver high performance rates 
on phones (~8ms at 320x240 on a 400Mhz ARM CPU). For each 
candidate, an 8x8 patch is extracted and blurred using a 3x3 Gauss 
kernel. The blurring increases robustness against pixel offsets 
introduced by inaccurate corner detection and small affine 
transformations. To quickly match a candidate against a previous 
frame, an active search in a 25x25 pixel search neighborhood is 
used. All features from the previous frame are inserted into a 4x4 
search grid of the 320x240 image that provides an almost linear 
search time. Candidates for matching are tested using sum of 
absolute differences (SAD) and ranked. If the highest ranked 
match for a candidate exceeds a certain threshold, it is treated as 
positive match (see 4th image in Figure 2). 

From the matched n point pairs, 4 features are chosen to 
combine an initial estimate of the homography from the last frame 
to the current frame. 

The selected homography is then refined by minimizing the 
projection error of all inliers using a Gauss-Newton least-squares 
fitting process. Finally, the camera pose estimate is updated via 
homography chaining: The homography of the frame-to-frame 
correspondence is applied on top of the homography from the 
previous frame. The pose is then calculated from the updated 
homography. A similar approach has been described by Simon et 
al. [8]. 

Naturally, the approach only works as long as at least 4 suitable 
points can be matched from one frame to the next. In practice, 
many more points are required for accurate results. Measurement 
errors inevitably accumulate, so the estimated pose drifts. In 
practice acceptable tracking can be provided for about 3-10 

seconds, depending on the amount of camera movement and error 
to be tolerated. This is sufficient in many situations to continue 
tracking when the marker is lost by an unintended movement of 
the user. Obviously, the homography-based approach works only 
for planar or nearly planar environments; in practice this covers 
most table-top and wall-mounted environments. 

4.2 Incremental tracking using pixel flow 
Incremental tracking of orientation with inertial sensors has been 
shown to be highly useful for AR applications to either improve 
tracking robustness or as a fallback when no other tracking 
approach is available. While most of today’s mobile phones do 
not have inertial sensors, their built-in camera can be used in a 
similar way using pixel flow detection [11]. 
Our pixel flow detector is intended for augmenting a panoramic 
view of the environment. A marker is used for initially 
determining the current global location and viewing direction. 
Then the user is free to turn around observing the augmentations, 
while remaining in the same location. We apply two different 
approaches to pixel flow – a more accurate method is tried 
initially for slow and medium camera movements. If it fails 
because of fast camera movement, a second, more robust method 
is used. 

The accurate pixel flow tracker uses the same feature following 
approach as described in section 4.1. All feature flow vectors are 
inserted into a 2D histogram that encodes the image’s movement 
in X- and Y-direction. The histogram has a size of 32x32 bins and 
can therefore detect movements of up to ±15 pixels. To detect the 
dominant pixel flow, the histogram is searched for local maxima. 
The pixel flow in the overall image is finally estimated as a 
weighted sum of the maximum and its neighboring values in the 
histogram. If a second local maximum with a value of more than 
60% of the absolute maximum is found, the algorithm assumes a 
failure and repeats the step with a version of the image scaled 
down by 50%. Downscaling suppresses noise and hence increases 
robustness, but also doubles the effective range of the flow 
detection. 

If no pixel flow can be successfully determined within 3 levels 
of the image pyramid, a second approach for estimating the pixel 
flow is tried, which is yet more robust, but less accurate. This 
approach is based on template matching over an image pyramid, 
which is more commonly used for estimating the optical flow of 
images [11]. Since a pure rotation model is assumed, a single 
motion vector valid for the whole image is expected. Hence, the 
estimated motion vectors from one image pyramid level are 
averaged and forwarded to the next lower level of the image 
pyramid as a starting point to limit the search area. In practice, the 
corner tracking method turns out to be much more accurate than 
the template matching. However, template matching is more 
robust under fast camera movement, which often results in images 
that are too blurred for corner detection. While in most cases, the 
first method works fine, the second method provides a robust fall 
back for extreme conditions. 

       

Figure 2. 1st image: frame marker, 2nd image: split marker, 3rd image: dot markers, 4th image: flow vectors of features matched from the 
previous frame (added for illustration only). Corners without a line could not be matched. The embedded marker (left bottom) is not 

sufficiently visible for tracking anymore. 



The 2D pixel flow is finally interpreted as rotational motion 
based on the intrinsic camera parameters. Hence, this simple 
approach cannot cope with rotations around the viewing direction 
(“roll”), but “yaw” and “pitch” only. The accumulated rotational 
offset is then applied on top of the last known absolute pose. 

5 EVALUATION 
We tested the described methods on an Asus M530W Windows 
Mobile smartphone. This phone was selected for its CPU, which 
is clocked at 400MHz (phones currently use CPUs clocked from 
200-600MHz) and for its high quality camera, which delivers 25 
frames per second. 

Table 1 shows the timings of the three proposed marker 
tracking methods. Naturally, thresholding is independent of the 
applied marker mode. Shape detection of split markers is slightly 
slower than for frame markers due to their more complex shape. 
Split markers take more time for marker detection since each 
marker consists of two parts and hence requires calculating 2 
homographies for unprojection (plus another one for pose 
estimation). 

Dot markers require to spend much time in filtering out non-
circular structures at the shape detection stage. The marker 
detection stage includes the detection of the dot-grid as well as 
unprojecting candidates and matching them against the database 
of templates. Altogether this makes dot markers about 2 times 
slower than rectangular markers. 

 
 Split 

marker Frame marker Dot marker 
Thresholding 0.9ms 0.9ms (0.9ms) 0.9ms (0.9ms)

Fiducial Detection 1.6ms 1.4ms (1.4ms) 3.9ms (2.8ms)
Marker Detection 3.1ms 1.8ms (0.0ms) 3.6ms (0.0ms)
Pose Estimation 0.9ms 0.7ms (0.7ms) 0.6ms (0.4ms)

Overall 6.5ms 4.8ms (3.0ms) 9.0ms (4.1ms) 

Table 1. Benchmarks of the proposed marker tracking methods. 
Values in parentheses are for slow camera movement. 

Table 1 presents an overview of average timings obtained by 
tracking the target for about 15 seconds (~400 frames). The values 
in parentheses present timings for a slow moving camera (or 
marker). In this case the tracker is able to redetect the marker 
without executing the full pipeline.  

The incremental tracker as described in section 4.1 runs in two 
modes: When marker tracking succeeds, it only detects corners 
and harvests patterns. As Table 2 shows, in this mode most of the 
time is spent in the corner detector. As soon as the marker is lost, 
the incremental tracker additionally matches the new patches 
against those of the previous frame and estimates the homography 
for chaining. 

 

 Corner 
Detection 

Corner 
Tracking 

Homography 
+ Pose Overall 

Detected 8.1ms 1.6ms 0.0ms 9.7ms 
Undetected 8.1ms 2.3ms 2.7ms 13.1ms 

Table 2. Benchmarks for Incremental tracking using feature 
following (as described in section 4.1) 

While the speed of the methods mentioned above is mostly 
independent of image properties, the speed of the incremental 
tracker using pixel flow depends on many factors, including the 
number of corners detected, the repeatability of the extracted 
features, and especially on the speed of the camera movement, 
which determines how many levels of the image pyramid have to 
be created and checked. Our measurements show that the pixel 
flow timings vary between 8 and 14 milliseconds. 

6 DISCUSSION AND FUTURE WORK 
We have presented a toolkit of new marker tracking techniques 
running in real-time on off-the-shelf mobile phones. The marker 
designs produce less image clutter than previous designs, and 
more easily blend into typical AR environments. By using 
incremental tracking based on planar feature following or 
hierarchical pixel flow, situations with occlusions or rapid 
movements that were difficult to accommodate with previous 
marker tracking can now be handled with ease. The primary 
advantages of marker based tracking, in particular its reliability 
and the built-in object detection capability remain unchanged. 

In future we plan to extend the incremental tracker based on 
planar feature following with true localization and mapping, 
creating a kind of a “Poor man’s SLAM”. Such an approach will 
map the marker’s environment and therefore not suffer from drift. 
However, this approach requires improved feature matching 
method that can tolerate larger affine changes. 
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