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ABSTRACT 

User-reviews of mobile applications provide information 

that benefits other users and developers. Even though 

reviews contain feedback about an app’s performance and 

problematic features, users and app developers need to 

spend considerable effort reading and analyzing the 

feedback provided. In this work, we introduce and evaluate 

QuickReview, an intelligent user interface for reporting 

problematic app features. Preliminary user evaluations 

show that QuickReview facilitates users to add reviews 

swiftly with ease, and also helps developers with quick 

interpretation of submitted reviews by presenting a ranked 

list of commonly reported features. 

Author Keywords 

User Interface; App Reviews; Android; Mobile Devices, 

Data Driven; Intelligent User Interfaces 

ACM Classification Keywords 

H.5.2. User Interfaces; H.5.m. Information interfaces and 

presentation (e.g., HCI): Miscellaneous; 

INTRODUCTION 
Contemporary app marketplaces provide users and app 

developers a feedback channel, in the form of app reviews 

and star ratings [2]. To this end, users’ reviews are essential 

to the lifecycle of an app in fulfilling two distinct purposes. 

App reviews: (1) allow developers to identify bugs and 

problematic features and, (2) enlighten new users about an 

app’s weaknesses, and facilitate users’ purchasing and 

downloading decisions [1]. However, for both these parties, 

the review process poses many challenges [3]. App 

developers of popular apps need to read hundreds of app 

reviews to identify common problems. In addition, users are 

not able to endorse or confirm previous reviews, but instead 

must write new reviews if the need arises [9]. This 

increases the number of reviews that need manual text-

interpretation, even though only around 35% of app reviews 

have been shown to offer information that can directly help 

developers to improve their apps [2]. 

To bridge this gap, this work explores both the feasibility 

and usefulness of developing an intelligent and adaptive 

user interface, QuickReview. QuickReview is motivated 

by Von Reischach et al. who investigated the differences in 

reviews and rating on mobile devices when compared to 

web-based systems, confirming that mobile users prefer less 

but aggregated product information [4]. This holds true for 

both entering reviews and browsing reviews. QuickReview 

provides a data-driven interface that adapts based on 

existing reviews and allows users to easily provide 

feedback on problematic features, while also aggregating 

the most reported problematic features for app developers 

and perspective new users. 

We provide a review of related work in the following 

section, before presenting our development of 

QuickReview. Thereafter, we provide our evaluation setup 

and the outcomes. We then briefly discuss our findings and 

provide concluding remarks. 

BACKGROUND 
Several research groups have looked into related problems 

of optimizing the presentation of product reviews. Jin et al. 

for example, proposed a solution that focuses on 

summarizing reviews for better comparison of two product 

candidates by extracting attribute-value pairs from longer 

reviews and presenting them in a one-page summary view 

[5]. However, their work focuses on comparing two 

different ways of presenting information, and not on an 

interface for providing and aggregating reviews, which 

forms the focus of our work. Dong et al., focused on 

developing an intelligent review assistant that recommends 

topics for writing better reviews on the web that contains 

more relevant facts [6, 7]. There are also works that do not 

focus on writing better reviews, but aim to aggregate and 

analyse reviews to extract meaningful information. For 

example, Liu et al. [8] used text mining and sentiment 

analysis tools to extract and identify user sentiments of 

specific app features. Their approach to analysing app 

reviews is similar to that conducted by Patel et al. [9], 

whose app analytics were adapted in extracting the 

problematic features for the app(s) being reviewed in the 

current study. A recent study by Chen et al. [10] proposed 

AR-Miner for mining app reviews to extract the most 

informative reviews for app developers. This study 
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showcases the advancement in app review mining and 

allows features to be identified for further consideration, in 

supporting app improvements. The work in [24] provides 

auto-completion suggestions for a new reviewer based on 

reviews submitted by other users. However, this involves 

all users to manually enter their reviews, which this work 

aims to minimize, amidst other goals. 

While works reported in [9] and [10] have largely 

supported data extraction, our work goes one step further by 

presenting summarised outcomes within a mobile interface. 

This summarised data is subsequently used for generating 

new reviews (reports about problematic app features). To 

the best of our knowledge, this work is the first to present a 

data-driven mobile interface to improve the quality and 

structure of app reviews. In addition, preliminary 

evaluations suggest that our intelligent app, QuickReview, 

could be of utility to users and developers. 

QUICKREVIEW DEVELOPMENT 

We anticipated that an intuitive, data-driven interface needs 

to meet three aspects of mobile user interfaces.  First, it 

should be able to eliminate the need for extensive human 

analysis that is currently required to process voluminous 

reviews, while at the same time supporting the users of an 

app to generate a new review with ease (i.e., enable better 

usability when compared to a traditional system) [21]. 

Second, beyond aiding users’ in generating reviews, an 

intuitive review interface should demand minimal cognitive 

load, in taking account of varying mobile contexts often 

requiring users’ attention [22]. Third, the performance of 

the data-driven interface should be superior to that of 

traditional systems used for capturing users’ feedback [23]. 

We considered these criteria to guide the development of 

our intelligent and adaptive user interface. 

Review Extraction and Processing 

We first employed natural language processing (NLP) 

techniques to the reviews extracted from Google Play. Our 

goal was to process reviews to identify the problematic 

features reported in the reviews and the nature of issues 

(e.g., “GPS feature being slow”, where GPS is the feature 

and slowness is the issue). In order to focus on features that 

are problematic, we extracted all reviews with negative 

emotions such as anger, sadness and fear, which signal 

discontent of users [11]. We used the LIWC tool dictionary 

to inform our negative words cohort, which contains 431 

negative words [12]. Noun terms in unstructured text reflect 

the main concepts in the subject of a clause. From a part-of-

speech (POS) perspective, nouns are indeed reflective of 

specific objects or things. From a linguistic perspective, 

nouns often form the subjects and objects of clauses or verb 

phrases. Hence, nouns are the features that are deemed 

problematic and the verbs are the issues. These and other 

understandings have been embedded as rules in natural 

language processing (NLP) tools, such as the Stanford 

parser which performs POS tagging [13]. We incorporated 

the Stanford API in our toolset to enable us to extract noun 

phrases (features) from reviews, before counting the 

frequency of each noun as a unigram (e.g., if “SMS” 

appeared at least once in each of 20 reviews, our app would 

then output SMS = 20). The ranking of words in this 

manner draws from computational linguistics, and is 

referred to as n-gram analysis. The n-gram is defined as a 

continuous sequence of n words in length that is extracted 

from a larger stream of elements [14]. We extracted the 

syntactic relations between pairs of features (nouns) and 

issues (verbs) in each request by providing counts of these 

noun-verb pairs in the reviews. For example, if one review 

reads “the Search feature freezes every five minutes”, and 

another “the Search feature always freezes”, our output 

would be Search-freezes = 2. We aggregated these feature-

issue occurrences as input for the QuickReview interface, 

where the counts was used for ranking.  

A Data-Driven User Interface (QuickReview) 

Outputs extracted from reviews as described in the previous 

section were used to populate QuickReview’s user interface 

as an actionable graphical element (with buttons and check 

boxes), which allows users to select the features and issues 

they wish to include in their report (see Figures 1b and 1c). 

We anticipate that this would reduce the need for entering 

detailed comments when compared to traditional review 

interfaces (see Figure 1a).  Given that some apps may have 

little reviews, and thus, the text mining process may not be 

relevant in this context, QuickReview also allows users to 

optionally enter descriptive reviews expressing their 

personal opinion if needed (see Figure 1d). Thus, a review 

in QuickReview will contain a set of problematic features 

and issues selected by the user (e.g., Battery and drain) 

and/or an optional descriptive review. We were careful to 

design QuickReview interface with consideration for the 

limited screen size and input methods associated with 

mobile devices, also conforming to the Android design 

guidelines. An iterative approach to user interface 

development was adopted, with the final interface using a 

minimalistic design (exposing information only essential 

for the current user task). 

We first developed a replica of the Google Play review 

interface as a basis for comparison with QuickReview (see 

Figure 1a). Using the Google Play review interface, users 

are able to add a textual review and provide a star rating. 

Thereafter, we designed and developed QuickReview (see 

Figures 1b – 1d). In what follows, we discuss QuickReview 

design choices and implications for the overview screen 

(Figure 1a) before the comparative presentation of the data-

driven interface with the Google Play interface. 



The overview screen shown on the left of Figure 1(Figure 

1a) uses a Master/Detail structure where app reviews are 

shown without cluttering the main screen based on design 

principles reported in other works [15, 16]. Also, the 

overview screen presents a single clickable button 

(indicated by the Orange oval with an edit-icon) that 

presents a clear and consistent action choice that minimizes 

the cognitive load on users [17-19]. 

When the button is selected, the QuickReview interface 

showcases a vertical list of selectable elements, ranked 

based on the most commonly reported features about the 

specific app being reviewed, extracted during the automatic 

review analysis (see Figure 1b). The use of specific icons 

for the features provides easy recognition of the features, a 

shared principle found in many studies (e.g. [19]). 

Touching a certain feature (e.g., GPS) shows a different 

vertical list highlighting the top ten automatically extracted 

issues (i.e. issues co-occurring with the currently selected 

feature (see Figure 1c)). Again, a Master/Detail approach 

was applied to this screen to separate the detailed issues that 

users have associated with each identified feature in the list. 

These issues are also arranged in descending order based on 

occurrence in the reviews. The user can select the issues 

they would like to report. 

On clicking the OK button on Figure 1c users are taken to 

the submit screen (see Figure 1d) which presents candidate 

features and issues selected by the user (also confirming 

previous users’ complaints). The reason for presenting a list 

of previous users’ problematic features and the 

corresponding issues is to reduce the choices made 

available upfront to the user, thus reducing their cognitive 

load (i.e., a user’s memory about a feature can be kindled 

through a list of previous problems reported in reviews; 

developers are also able to browse options in Figures 1b 

and 1c to explore users’ feedback about app features). 

Having provided that, the user is also able to provide a 

textual response via the app review summary screen (see 

Figure 1d). This screen allows users to inspect their app 

review before submission, and enables them to easily 

change any aspect of their review (rating, identified 

features/issues, title or description). 

It should be noted that the QuickReview app was designed 

for a top-down screen structure to avoid potential 

information overload by arranging the functionalities using 

a multilevel hierarchy [20], thus exposing users only to 

information that is necessary for each intermediate step. 

The review interface on Google Play Store was developed 

(which has the same overview screen of Figure 1a) in order 

to facilitate comparisons with QuickReview. Upon 

selecting the review button in the overview screen, textual 

comments and the star rating can be provided by the user 

(not shown here due to space limitation). 

QUICKREVIEW EVALUATION SETUP 

A user study was conducted to evaluate QuickReview in 

comparison to the existing interface on Google Play Store. 

The study used a randomized trial as part of a within-

subject design comparing the Google Play Store review 

interface (now referred to as GP) against our data-driven 

interface, QuickReview (now referred to as QR). For both 

cases we populated the interfaces with data from existing 

 

Figure 1. Traditional app review system and QuickReview. a) App review interface as used in the Google Play Store. b) Proposed 

QuickReview interface extending traditional interface by presenting problematic features (e.g. GPS and Time) extracted by 

mining the existing text reviews and displaying them. c) Selecting a feature (here GPS) displays corresponding issues, also 

extracted using data mining, for this specific feature such as “lost” and “stops”. Users can confirm one or multiple issues for the 

selected feature without typing lengthy reviews. d) Users can still provide additional information via text comments. 



app reviews (4500 reviews) for the app MyTracks
1
 as the 

dataset was made available to us and the described app 

showed enough weaknesses that were worth analysing. 

After a short introduction to the study and background 

questionnaires, the participants were presented with two 

scenarios (one simple and one complex scenario) based on 

actual reported problems with the MyTracks app. For each 

scenario the participants had to report a problem using each 

of the review interfaces (GP and QR). Note GP requires the 

provision of a text-summary of the problem while QR 

provides an intelligent and adaptive interface. 

Upon studying both scenarios and completing their tasks, 

participants were then asked to answer two questionnaires 

on usability and cognitive load. Usability was measured 

using a modified System Usability Scale (SUS) [21]. Four 

questionnaire items (questions 2, 5, 6 and 7) were omitted 

as they were not applicable to app evaluations resulting in 6 

questions. The resulting usability scores from the SUS were 

calculated from the questionnaire items using the weighted 

calculation, ranging from 0 – 60 instead of 0 – 100 as 

described by Brooke [21]. Cognitive load was measured 

using the standard NASA-Task Load Index (TLX) [22] 

questionnaire. Finally, performance of the two apps was 

measured by recording the time taken by the users to 

complete app reviews using both interfaces, and we also 

recorded task completion rate and error rate. Twenty (20) 

participants (age 18 to 24 years, 13 females and 7 males) 

evaluated QuickReview, with all participants using a 

Samsung Galaxy S3 Android smartphone. 

QUICKREVIEW EVALUATION OUTCOMES 

An alpha level of 0.05 was applied for all statistical tests, 

and our outcomes are presented below. 

Usability: Our outcomes show that QR had a higher mean 

(M) usability score than the GP interface (49 versus 44; 

with standard deviation (SD) for QR=12.5 and GP=13.9). 

However, an independent samples t-test shows that these 

results were not significantly different (p>0.05). 

Cognitive Load: Six workload measures were used to 

examine cognitive load: mental demand, physical demand, 

time pressure, effort expended, performance and frustration. 

An overall cognitive load score was calculated, combining 

these scores into a single mean score for each participant 

(M: QR=23.5, GP=35.3; SD: QR=18.9, GP=26.2). These 

measures indicate that QR required less cognitive load 

when adding reviews than GP (mean difference of 11.8). 

An independent samples t-test conducted showed no 

significant difference (p>0.05). Follow up tests for each of 

the cognitive dimensions were also not significant. 

Performance: As noted above, we initially considered 

measures for time taken for task completion, task 

completion rate (whether a task was successfully 

                                                           
1https://play.google.com/store/apps/details?id=com.google.android.maps.m
ytracks&hl=en 

completed), and error rate (whether a participant misused or 

misunderstood features of the app) when testing the 

interfaces of GP and QR. However, task completion rate 

and error rate did not produce any data points, as all 

evaluations were completed successfully without errors. 

Therefore, only time for task completion was considered 

when comparing performance for QR and GP. These 

distributions violated normality, and thus, a Mann-Whitney 

U non-parametric test was conducted which confirmed 

statistically significant differences in performance when 

conducting reviews using GP (M = 67.7, SD = 19.6) and 

QR (M = 50.3, SD = 20.10), with the process being much 

faster on QR, z = -2.37, p = 0.01. The effect size associated 

with this finding, d = 0.88, was found to exceed Cohen’s 

size convention for a large effect size (d = 0.8). 

DISCUSSION AND CONCLUSION 

We examined the feasibility and usefulness of developing 

an intelligent and adaptive user interface, QuickReview. 

While two aspects our results were not significant, 

QuickReview recorded higher usability score than the 

current Google Play interface for adding reviews. In 

addition, evaluation outcomes show that QuickReview 

demanded less cognitive workload. The utility of 

QuickReview in these aspects is exemplified through 

participants’ written feedback. One noted that the new 

system was “easy to use and understand” and the other 

noted it "didn't take too much physical and mental effort". 

These findings are particularly satisfying given that the lack 

of familiarity may have moderated our results somewhat, as 

all of the users were familiar with the old review system on 

Google Play, while only seeing and using QuickReview for 

the first time when introduced in the evaluation. 

Psychologists have established that cued recall (i.e., 

prompting based recall of QuickReview) is faster than free 

recall (i.e., recollecting and then writing reviews as done 

via Google Play). We believe that this may have been 

reflected in the decrease in cognitive load for all the six 

cognitive load factors for QuickReview [19]. This 

assessment may be particularly valid given the results for 

performance outcomes, which also show that users were 

able to log reviews much faster when using QuickReview 

than the Google Play interface. This confirms the relevance 

of limiting time overhead in mobile interface design [23]. 

QuickReview could also be useful for app developers. The 

populated list of features and corresponding issues are 

ranked and presented such that improvement opportunities 

could be quickly identified by the developers. That said, 

while these initial outcomes are encouraging, a power 

analysis using the GPower indicated that 336 evaluators 

were needed to detect large effects (d = 0.8) with 95% 

power using an independent samples t-test with an alpha 

value at 0.05. We thus plan to extend our evaluations, both 

in terms of respondents and including reviews for a wider 

range of apps. We also plan to extend QuickReview to 

include positive aspects of apps, showing how key features 

satisfied users. 
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