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Figure 1: We propose Spatial Gaze Markers as implicit spatial reminders in augmented reality. The system tracks user attention
(A) and detects when the user shifts their attention from a current task space (e.g., a fuse board) and places a visual marker in
the last gaze position (B). When the user returns their attention, the marker guides them to where they had left off (C). Spatial
Gaze Markers are application-independent and can support task switching over different timescales.

ABSTRACT
Task switching can occur frequently in daily routines with physi-
cal activity. In this paper, we introduce Spatial Gaze Markers, an
augmented reality tool to support users in immediately returning
to the last point of interest after an attention shift. The tool is
task-agnostic, using only eye-tracking information to infer distinct
points of visual attention and to mark the corresponding area in the
physical environment. We present a user study that evaluates the
effectiveness of Spatial Gaze Markers in simulated physical repair
and inspection tasks against a no-marker baseline. The results give
insights into how Spatial Gaze Markers affect user performance,
task load, and experience of users with varying levels of task type
and distractions. Our work is relevant to assist physical workers
with simple AR techniques and render task switching faster with
less effort.
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1 INTRODUCTION
Spatial memory plays a crucial role in human cognition and our
ability to switch between tasks [32]. When we remember where
objects of interest are located, we are able to turn to them efficiently
without visual search. However, a user’s capacity to remember
spatial locations can be interrupted in many ways – many similar-
looking objects in a crowded environment, the complexity of multi-
tasking in a given task, or encountering distractions along the way
can all shake up our memory of objects in space.
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As a novel approach, we propose Spatial Gaze Markers (SGM) as
implicitly generated spatial reminders in augmented reality (AR).
SGM is conceived as a system that operates in the background of
the user’s activity without any knowledge of the tasks in which
they engage. The system leverages eye-tracking to detect attention
shifts when a prior gaze fixation is no longer in the user’s field of
view (FOV) and generates a visual marker in its place (Figure 1A).
This goes unnoticed by the user until they return their attention to
the task space, where the marker will guide them back to exactly
where they had last attended (Figure 1B). Once a marker has been
noticed, it will be removed. As a result, SGM is subtle but effective
in supporting task resumption.

Prior work has shown gaze cues to be effective for task switching
between screens [25]. SGM extends the concept to leaving cues
in the real world, based on information about the physical envi-
ronment captured through a depth camera of the AR head-worn
display. The system is designed to be easily deployed and does not
rely on any knowledge of user activity or objects they interact with.
Attention shifts are inferred from relative eye and head movements
without task knowledge, and markers are placed based on gaze
and depth of the AR scene. SGM lends itself to be task-agnostic,
for support of any situation in which tasks are resumed after an
attention switch – from casual activity left behind and returned to
later to intensive multi-tasking.

For evaluation of SGM, we developed a real-world simulation of
repair and inspection tasks. The tasks require the user to inspect a
workspace, switch to a tool space for any simulated fault discovered,
and then return to the workspace. This simulates a situation in
which attention needs to be shifted between different spaces and
where the task is demanding as it contains a larger number of
objects that look the same until inspected closely. Based on these
tasks, we conducted an experiment with 20 participants, comparing
SGM against a baseline of no-marker. We found SGM reducing
task time and task load when users return to the workspace, which
shows that low- and high-demand tasks can benefit from the use
of simple spatial reminders.

In summary, our contributions include (1) SGM as a technique to
assist workers via AR by placing visual markers in the real world as
reminders and to lower visual search demands ; (2) evaluation tasks
allowing investigating user performance with physical work, with
controlled factors of visual search complexity and task distractions,
useful to study task-switching in physical work assisted by AR ;
(3) insights on the effects of SGM on task distractions and spatial
memory build up over time, and when it is beneficial regarding
speed, error, and perceived usability.

2 RELATEDWORK
How we organise, coordinate, and switch tasks in daily life is re-
lated to human action and thought [30]. Task transitions and multi-
tasking involve complex mental processes, and studies have shown
effects with regard to task and location factors [24], historical in-
formation [46], and interference phenomena [26]. Task switches
occur frequently throughout daily activity but are prone to fail
users when users encounter distractions [26]. The importance of
spatial memory for interaction across tasks is long recognised in
HCI [37]. Cockburn and McKenzie found that task performance

degrades in 3D when compared to 2D tasks [6, 7]. 3D tasks are more
demanding than 2D tasks because of the additional dimension, vast
space, and the highly situation-dependent setting of objects and
spaces in the physical environment that can affect spatial memory.
In this paper, we examine SGM as a generic approach to provide
users with “spatial reminders” of where they had left a task.

Task-switching and task resumption have been supported, for
instance, with visual links across applications [45] and replay of in-
teractions [29], however, our work is specifically inspired by the use
of gaze cues as an implicit support mechanism [38]. Kern et al. intro-
duced Gazemarks to support attention switches between multiple
screens and demonstrated reduced search time on one display after
being presented with a disruption on the other [25]. EyeBookmark
supports readers in recovering from interruptions by highlighting
the last known gaze position in the text [23], and SmoothGaze inte-
grates similar support for gaze-assisted task resumption [5]. Gaze
cues have also been found effective for navigation in digital maps
to counter spatial context lost during zooming [15]. In this work,
we build on the principal idea of Gazemarks but extend it from
screen-based interaction to interaction in the real world, mediated
by AR.

Many of the real-world tasks that AR aims to support require
users to shift attention between different spaces in their environ-
ment. Among the most widely studied scenarios is order picking,
a prototypical task for visual guidance in AR [10, 21, 39, 40]. The
task requires attention shifts between a central work area and other
spaces from which parts are collected [11, 13, 17]. Numerous works
have explored different visual cues to guide users to the parts they
need to locate [35, 39, 40]. Other work has considered saliency
modulation as an alternative to graphical cues [1, 42, 43]. These ap-
proaches have in common that they rely on detailed knowledge of
tasks, objects, and their position in the environment. SGM presents
a principally different approach as it is more flexible for various
use cases. As such, it can support any situation in which a task is
being resumed, but limited to generic provision of a gaze marker
in the position last attended before a shift from the task occurred.

The tasks we designed for evaluation of our approach resemble
order-picking in that they require alternation between a central
workspace and an area from which to pick tools. However, our
tasks are distinct as they simulate inspection and repair scenarios in
which users need to check parts in the workspace and findmatching
tools. In contrast to order picking, this places particular demand
on spatial memory, with a main workspace that contains similar
objects while the intermediate task induces cognitive demand to
match objects.

A wide range of other work relates to ours in using gaze to sup-
port interaction in AR [33]. Gaze is, for instance, adopted to provide
hands-free control [28], assist manual input [31, 44], infer atten-
tion [41], and adapt interfaces [14]. Gaze has also been explored for
collaboration tasks in AR, where gaze is visualised to provide col-
laborators with an indication of where others are attending [18, 22].
Our work also uses gaze visualisation, however, as implicit cues to
oneself, sampled when significant shifts in attention are detected.
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Figure 2: Spatial Gaze Markers are an AR tool that aids return to an earlier task implicitly based on eye-tracking and transient
gaze cues without requiring any task or activity knowledge. Fixations are detected in the user’s FOV (A) and are used to detect
the user turning away when the last fixation falls out of the FOV and spawns a visual marker in the last fixated position (B).
When the user returns their attention to the task space, they are guided by the marker to where they had last attended (C). The
system detects when the marker has been noticed, upon which it is removed (D).

3 SPATIAL GAZE MARKERS
The concept of Spatial Gaze Markers is straightforward: whenever
attention is removed from a task, a virtual marker is left in its place
and remains in place to aid the return to the task. As our approach
is task-agnostic, it has no notion of users’ actual tasks and places
markers when large gaze shifts occur, that take the user attention
away from a space in which they previously focused. The system
has no notion of whether the user intends to return but a marker is
left in place, to be of potential use.

The system requirements for SGM are an AR head-mounted
display (HMD), eye-tracking, and 3D environment tracking. These
requirements are, for instance, met by the Microsoft HoloLens 2,
which we used for the implementation of our concept. The Hololens
2 provides optical see-through AR with a 43◦×29◦ FOV, up to 90𝐻𝑧
eye-tracking, and a real-time tracked 3D environment mesh. The
system has four components:

(1) Fixation detection: the system continuously tracks eye move-
ment to segment gaze fixations.

(2) Attention shift detection: large shifts in gaze fixation are
detected as attention shifts.

(3) Marker visualisation: the last gaze fixation before the shift
is visualised as a marker.

(4) Marker removal: the marker is removed when it has been
noticed by the user.

Fixation detection. The Hololens 2 provides eye-tracking but
does not segment fixations. We use a real-time version of the I-
DT algorithm (Algorithm 1) to capture fixations within the FOV
(Figure 2A), taking newly captured gaze rays and returning 3D
fixation points based on a fixation angle and fixation duration. We
set the fixation angle to 1.5◦ to account for eye-tracking inaccuracy
and fixation duration to 250𝑚𝑠 to account for natural fixation time
and tracking latency [36].

Attention shift detection. We detect when users turn from a task
area by checking whether the most recent fixation falls outside
of a specified angle from the centre of the HMDs FOV, thereby
signifying a larger head movement (Figure 2B). In our prototype,

we set the angle to 33◦ (Algorithm 2). Given the limited FOV of the
Hololens 2 HMD, this implies an attention shift is only detected
when the last point of focus is no longer in the display’s FOV

Marker visualisation. When the user returns their attention to a
previous task area, they will be presented with a visualisation of
where they last fixated (Figure 2B-C). The gaze marker is presented
as a transparent circle outline with a static size of 1.5𝑐𝑚 radius. The
outline is rendered transparent (12.5%), magenta (FF00FF), and a
border thickness of 4𝑚𝑚. Although we considered other visuali-
sations in pilot tests, such as crosshairs and pins, we found that
the current design is sufficient to provide a good balance between
visual saliency and little obstruction of the scene, is suitable for the
purpose of our proof-of-concept implementation, and builds upon
findings of prior work on AR guidance cues [39].

Marker removal. We remove markers when a new fixation is
detected within 1.5◦ visual degrees (Figure 2D). This is suitable for
a task model where the marker has fulfilled its purpose, i.e., guiding
the user back, and then having no need anymore.

4 EVALUATION TASKS
The following describes the design and procedures of two tasks that
we developed for empirical evaluation of SGM. We envision that
these tasks have the potential for wider use for evaluating other
techniques and systems in contexts of AR guidance in physical
environments.

4.1 Rationale on Experimental Design Decisions
The challenge is to balance controlled study design (internal valid-
ity) and realistic insights (external validity). Focusing on a three-fold
task operation — (1) locating the work area and target, (2) turning
to find the required tool in the tools area, and (3) returning to the
work area for tool use — we emphasized the return phase due to its
potential impact on efficiency and task load.

Another crucial challenge was creating balanced task difficulty,
requiring tasks to be sufficiently difficult yet still achievable and re-
peatable. We focused on remembering object locations in a visually
consistent grid to introduce visual search difficulty. We constructed
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Algorithm 1: Real-time I-DT
1 Function GetFixationPoint(NewGP):
2 WindowSize←

⌈ FixationDuration
𝑇𝑖𝑚𝑒.𝑑𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒

⌉
3 if |GPQueue | ≤ WindowSize then
4 push NewGP to GPQueue
5 return null
6 end
7 while |GPQueue | > WindowSize do
8 pop from GPQueue
9 end

10

11 TmpCtrd ← GetCentroid(GPQueue)
12 Dispersion← maxNewGP VisualAngle(NewGP , TmpCtrd)
13 if Dispersion > FixationAngle then
14 clear GPQueue
15 return null
16 end
17 return GetCentroid(GPQueue)
18 End Function
19

20 Function VisualAngle(𝑝1, 𝑝2):
21 𝑑1 ← direction from eyes to 𝑝1
22 𝑑2 ← direction from eyes to 𝑝2
23 return Vector3.Angle(𝑑1, 𝑑2 )
24 End Function

Algorithm 2: Spatial Gaze Markers
1 while True do
2 HeadDir ← head direction
3 PFPDir ← direction from eyes to PreviousFP
4 if Vector3.Angle(HeadDir, PreviousFP ) > 33◦ then
5 SGM← spawn new marker at PreviousFP
6 add SGM to SGMList
7 continue
8 end
9

10 GazePoint ← GetGazeRayCollision(GazeRay , Collider)
11 FP ← GetFixationPoint(GazePoint)
12 if FP is null then
13 continue
14 end
15

16 foreach SGM in SGMList do
17 if VisualAngle(GazePoint , FP) > 1.5◦ then
18 Destroy(SGM)
19 end
20 end
21

22 PreviousFP ← FP
23

24 end

an inspection/repair-like setup using Post-its to mark points in the
work area where work could be done, while the tools area contains
the tools required to complete the task.

Making the work area visually complex required some iteration;
with too few points, the task is trivial, and with too many, the task
becomes too hard and takes too long. We designed the grid with
alternating, offset rows with gaps to not overwhelm participants
(Figure 3). The grid uniformity is likely the main factor making the
task more visually complex, while the offset would make it harder
to remember locations.

4.2 Task Design
We designed two simulated physical AR tasks to emulate repair and
inspection with switches between a work area and a tools area. Both
tasks use the same work and tools areas, with slight variations in
procedure. The work area is a 75” TV screen with a grid of 105 Post-
its, each covering a rendered shape. The screen controls the physical
elements of the task and is separate from any guidance. The screen
controls the physical elements of the task and is separate from
any guidance. Users flip up Post-its to reveal shapes, categorised
as “fine” (85 black shapes) or “faulty” (20 red shapes). The covered
shapes are randomly arranged by utilising seeded randomness on
the participant ID, condition number, and task type. There are four
different shape types, each with a randomly selected two-character
string, written in the centre, from a set of 10 options (4 · 10 = 40
unique “tools”). The tools area is a small table (108𝑐𝑚 tall and 90𝑐𝑚
diameter), positioned 190𝑐𝑚 in front of the work area, with the
participant in between. One of each “fine” shape was printed out,
placed in the tools area, and manually shuffled.

Following the task procedures, outlined in Figure 3, participants
must: (1) look at the work area (either with target highlighting or
manual searching for the next target), (2) find the faulty shape and
remember what and where it is, (3) locate and pick up the matching
“fine” shape in the tools area, (4) return to the work area and flip up
the correct Post-it, and (5) place the matching “fine” shape on the
“faulty” shape, thereby marking the once “faulty” shape location as
“fine”. Ideally, participants immediately remember and inspect the
correct Post-it, otherwise, we note a Recheck and let the participant
check other Post-its until either the correct Post-it is checked or
they recheck more than 5 Post-its, marking the trial as an error.

Errors trigger additional “faulty” shape repairs, ensuring at least
8 successful trials.

4.2.1 Task 1: Repair . In Repair, the next Post-it to check is high-
lighted with an AR border to emulate a broken part and for control-
ling the study and disappears 2 seconds after initially being seen.
While highlighting may seem unrealistic and could narrow the ex-
ternal validity, one could see this task as resembling an “immediate
repair” scenario, where something stands out and must be fixed
quickly. The Repair task is designed to emulate tasks with limited
spatial memory, as such we limited targets to only appear within
two Post-its from the edges, limiting reliance on edge references.
Fixing parts that “stand out” may limit the development of spatial
memory, leading to longer time spent searching for the previous
location.

In addition, this task incorporates the factor of task distractions,
allowing to study its impact on user performance under different AR
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Figure 3: Illustration of the task procedures (leaving out the distraction part of the Repair task). Note that visuals have been
slightly enhanced for the figure.

guidance concepts. It remains an open question whether SGM will
prove beneficial in scenarios involving frequent task interruptions.
Mathematical questions are employed as distractions, following a
precedent in previous studies that effectively controlled cognitive
load during experiments [9]. In our task sequence, distraction can be
introduced after the participant has found the tool, and just before
they turn around to the work area. While facing the tools area,
participants subtract 17 from a random four-digit number three
times and complete the steps out loud, ensuring that the calculations
were performed. This distraction, in theory, impairs spatial memory
due to mental capacity being occupied by the mathematics task.

4.2.2 Task 2: Inspection. In Inspection, Post-its are not highlighted,
instead, participants manually examine Post-its to find “faulty”
shapes, after which the procedure is the same. Inspection is a more
flexible, continuous process where participants can start anywhere
in the work area. One can think of it as a search where the location
of issues is unknown. Participants move from one Post-it to the next
until a “faulty” shape is found, potentially building spatial memory.
For example, starting from the left and progressing systematically

can help participants recall inspected areas, aiding in locating the
correct position in the work area.

5 USER STUDY
We designed a user study aiming to evaluate the usability and per-
formance of the SGM concept in two abstract inspection-like tasks.
We compare to a no-marker condition and involve task variations
to assess how task distractions can further affect user performance.

5.1 Study Design
The user study is split into two tasks, both designed as within-
subject. The first task, Repair, has two independent variables,
namely Technique and Distraction, counterbalanced using a Latin
Square [3] in two steps, first on Technique and then on Distraction.
We compare having SGM versus a baseline of No Marker and hav-
ing the user complete the task with No distraction versus being
Distracted by a secondary task before finishing (Section 4.2.1). This
results in four conditions for the Repair task: (1) No Marker+No
Distraction (NM+ND), (2) SGM+No Distraction (SGM+ND), (3)
No Marker+Distraction (NM+D), (4) SGM+Distraction (SGM+D).
The second task of the study, Inspection, has one independent
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variable, namely Technique (NM vs. SGM), as in the Repair task,
counterbalanced using a Latin Square [3]. In sum, 2 Techniques ×
2 Distractions × 8 trials + 2 Techniques × 8 trials = 48 successful
trials per participant. We had 20 participants complete our study,
totalling 960 successful trials.

5.2 Apparatus and Implementation
The study is implemented with Unity2021 for the Microsoft
HoloLens 2 using theMixed Reality ToolKit v2.8.2. The eye-tracking
refresh rate of the HoloLens 2 was extended from 30 Hz to 90 Hz
using the Extended Eye Tracking API1. Another instance of the
study ran on a Windows 10 laptop outputting video to the big TV
screen (3180 × 2160), also implemented in Unity2021, controlling
the physical part of the study, namely which shapes to show behind
the Post-its and whether the shapes are “fine” or “faulty”. Both
instances of the study use the same seeded randomness; both the
HoloLens 2 variant and the screen variant of the studies have the
exact same shapes. Although, the shapes on the HoloLens 2 are not
rendered, only the target highlighting in Repair. Additionally, to
capture where participants look inside the two areas, the study re-
quires a pre-setup phase on the HoloLens 2 where the experimenter
marks the work and tools areas. These planes are only necessary
for capturing the participants’ gaze for logging and conducting the
study and are by no means integral to the function of SGM, which
can work on any 3D mesh.

5.3 Procedure
Participants received a study briefing, completed consent and demo-
graphics forms, and watched a video of the Repair task with SGM,
ensuring that participants understood the study elements before
starting. Participants then wore the HoloLens 2 and underwent
eye-tracking calibration.

Starting with Repair, participants had three training trials fol-
lowing the counterbalancing and were instructed to be as fast and
as accurate as possible. Subsequently, participants completed 8 suc-
cessful study trials for the current Repair condition, followed by a
post-condition questionnaire consisting of a NASA-TLX [20] with
one additional Eye Demand question. After each condition, partici-
pants waited until the screen was cleared of stuck-on shapes before
proceeding to the next condition according to the counterbalancing.
Additional training sessions were completed when new elements
of the study design were reached.

Ending with Inspection, participants had three training trials,
followed by 8 study trials according to the counterbalancing, and
completed the same post-condition questionnaire, just as for Repair.
Then, after completing both Inspection conditions, the participants
completed a final post-study questionnaire to gauge how the par-
ticipants felt about the system and the setup. The study lasted on
average around 60 minutes.

5.4 Evaluation Metrics
For dependent variables, we include the following measures. Relo-
calisation Time measures how much time it takes for the participant
to find the correct Post-it after returning to the work area, counting

1https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/extended-
eye-tracking-unity - last accessed 17th of November 2023.

from the first time gaze hits the work area after returning from the
tools area until the correct tool is placed under the target Post-it. Re-
localisation Time is thereby not directly affected by the additional
distraction task in Repair, but only indirectly affected by how the
distraction task impacts the participants’ memory. Rechecks count
how many Post-its the participant had to check before finding the
correct Post-it, manually noted by the study conductor. An Error
Rate was calculated as the fraction of error trials out of total trials,
with trials marked as an error if the participant checked more than 5
Post-its or picked an incorrect printed-out shape. To get insight into
the participants’ task load we used the NASA-TLX in a 7-point Lik-
ert scale variant2 [8, 16, 34] conducted as Raw TLX [4, 19] answered
immediately after each condition, and User Feedback on SGM was
gathered in a post-study questionnaire after all six conditions were
completed.

5.5 Participants
We recruited 20 participants (13 male, 6 female, and 1 other3) from
the local university, consisting mainly of Computer Science re-
searchers and Master’s students. Participants’ age ranged from 22
to 37 (𝑀 = 26.86, 𝑆𝐷 = 3.73). On a scale between 1 (low) and 5 (high),
participants rated themselves as having average experience with
VR/AR (𝑀 = 3.48, 𝑆𝐷 = 1.29) and eye-gaze (𝑀 = 2.38, 𝑆𝐷 = 1.32).

5.6 Results
After outlier removal (≈ 3.8%), the data contained non-normally
distributed data (as reported by Shapiro-Wilk tests). Therefore, we
ran a series of Friedman tests with posthoc Bonferroni corrected
Wilcoxon signed-rank tests on both logged objective data and sub-
jective survey data. Statistical significance is shown in graphs as *
for 𝑝 < .05, ** for 𝑝 < .01, and *** for 𝑝 < .001. Note that signifi-
cance tests were not carried out between Repair and Inspection.

This section focuses on Relocalisation Time, Rechecks, Error
Rate, NASA-TLX, and User Feedback. Full analysis results on logged
data can be found in supplementary materials, including results
on additional measures that did not add to the discussion, such as
Task Completion Time (i.e. the time from the start of the trial until
the participant completes the trial). However, as reference points
for Relocalisation Time, the average Task Completion Time for
each condition was, in the Repair task, 22.84𝑠 for NM+ND, 16.63𝑠
for SGM+ND, 50.29𝑠 for NM+D, and 38.07𝑠 for SGM+D. In the
Inspection task, NM took 19.59𝑠 and SGM took 18.30𝑠 .

5.6.1 Relocalisation Time (Figure 4a). We found significant differ-
ences in Relocalisation Time in the Repair task (𝜒2 (3) = 53.1, 𝑝 <

0.001), both SGM+ND (𝑀 = 3.01, 𝑆𝐷 = 0.425) and SGM+D
(𝑀 = 3.39, 𝑆𝐷 = 0.683) conditions were faster than both NM+ND
(𝑀 = 5.14, 𝑆𝐷 = 1.508) and NM+D (𝑀 = 7.13, 𝑆𝐷 = 2.33) condi-
tions (all 𝑝 < 0.001), NM+ND was faster than NM+D (𝑝 < 0.001),
and SGM+ND was faster than SGM+D (𝑝 = 0.042). In the Inspection
task, no significance was indicated (𝜒2 (1) = 3.2, 𝑝 = 0.074).

5.6.2 Rechecks (Figure 4b). In terms of Rechecks, we found signif-
icant differences in the Repair task (𝜒2 (3) = 31.194, 𝑝 < 0.001);
bothSGM+ND (𝑀 = 0.1, 𝑆𝐷 = 0.447) and SGM+D (𝑀 = 0.65, 𝑆𝐷 =

27 points (1-7) neatly divide the 21 original points (0-20) and is easier for participants.
3Anonymized.

https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/extended-eye-tracking-unity
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/extended-eye-tracking-unity
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(a) (b) (c)

Figure 4: Results on Relocalisation Time (a), Rechecks (b) and Error Rate (c). No comparisons were done between Repair and
Inspection.

Figure 5: Results on NASA-TLX. No comparisons were done between Repair and Inspection.

1.226) conditions exhibited significantly fewer rechecks than the
equivalent NM+ND (𝑀 = 2.15, 𝑆𝐷 = 2.323) and NM+D (𝑀 =

2.9, 𝑆𝐷 = 2.47) conditions within the same level of Distraction
(all 𝑝 ≤ 0.018) and SGM+ND exhibited fewer rechecks than NM+D
(𝑝 < 0.001). We also found significant difference in the Inspection
task (𝜒2 (1) = 5.333, 𝑝 = 0.021) with SGM (𝑀 = 0.4, 𝑆𝐷 = 1.188)
exhibiting significantly fewer rechecks than NM (𝑀 = 1.9, 𝑆𝐷 =

3.007).

5.6.3 Error rate (Figure 4c). No significant differences were indi-
cated in Error Rate in the Repair task (𝜒2 (3) = 4.244, 𝑝 = 0.236) or
in the Inspectiontask (𝜒2 (1) = 0.667, 𝑝 = 0.414).

5.6.4 NASA-TLX (Figure 5). As for the NASA-TLX scores, we
found significant differences in Mental Demand in the Repair task
(𝜒2 (3) = 52.175, 𝑝 < 0.001), SGM+ND (𝑀 = 2.15, 𝑆𝐷 = 0.67)
was rated significantly less mentally demanding than all three
other conditions (all 𝑝 < 0.001), SGM+D (𝑀 = 4.75, 𝑆𝐷 = 1.29)
was less mentally demanding than NM+D (𝑀 = 6.1, 𝑆𝐷 = 1.02)

(𝑝 < 0.001), and NM+ND (𝑀 = 4.3, 𝑆𝐷 = 1.26) was less men-
tally demanding than NM+D (𝑝 < 0.001). Significant difference
was also found in Mental Demand in the Inspection task (𝜒2 (3) =
6.250, 𝑝 < 0.012) with SGM (𝑀 = 2.45, 𝑆𝐷 = 1.05) being less
mentally demanding than NM (𝑀 = 3.3, 𝑆𝐷 = 1.22). Regarding Per-
formance in the Repair task (𝜒2 (3) = 12.677, 𝑝 = 0.03), SGM+ND
(𝑀 = 2.0, 𝑆𝐷 = 1.56) was rated better (lower rating) than SGM+D
(𝑀 = 3.1, 𝑆𝐷 = 1.33) (𝑝 = 0.018). In terms of Effort in the Repair
task (𝜒2 (3) = 43.235, 𝑝 < 0.001), SGM+ND (𝑀 = 2.35, 𝑆𝐷 = 0.67)
was rated significantly less effortful than all three other conditions
(SGM+D (𝑀 = 4.3, 𝑆𝐷 = 1.3), NM+ND (𝑀 = 4.4, 𝑆𝐷 = 1.54),
NM+D (𝑀 = 5.6, 𝑆𝐷 = 1.27)) (all 𝑝 < 0.001), NM+ND required
less effort than NM+D (𝑝 = 0.012), and SGM+D required less
effort than NM+D (𝑝 = 0.03). Finally, we found significant differ-
ences in Frustration in the Repair task (𝜒2 (3) = 28.938, 𝑝 < 0.001),
SGM+ND (𝑀 = 1.55, 𝑆𝐷 = 0.83) was rated less frustrating
than all three other conditions (SGM+D (𝑀 = 3.0, 𝑆𝐷 = 1.72),
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NM+ND (𝑀 = 2.6, 𝑆𝐷 = 1.35), and NM+D (𝑀 = 3.6, 𝑆𝐷 = 1.7))
(all 𝑝 ≤ 0.018).

5.6.5 User Feedback. 13 participants mentioned that they appre-
ciate that SGM reduced task load, making tasks easier to manage.
12 participants mentioned that SGM helped them remember target
locations. 3 participants mentioned feeling that SGM improved task
efficiency, especially in Distraction conditions. However, our par-
ticipants also noted several challenges. 5 participants mentioned
that SGM would occasionally provide incorrect guidance. How-
ever, these incorrect placements were infrequent and most often
caused an error trial and are thereby captured by the Error Rate.
2 participants mentioned SGM disappeared too quickly, causing
them to lose track of it. 4 participants mentioned that SGM was
less useful in the Inspection task. Finally, 1 participant mentioned
that the limited FOV of the HoloLens 2 required them to move their
head more.

6 DISCUSSION
Our goal with SGM was to develop a task-agnostic AR tool that
would guide users back on track, especially in cases where spatial
reminders have the potential to render physical tasks easier to
perform. The following discusses the main findings on objective
and subjective findings and relates these findings in the context
of related work. Furthermore, we briefly discuss envisioned use
cases and the quick deployment through the task-agnostic nature
of SGM.

6.1 Main Study Insights
SGM effectively guided participants across all factors in the Repair
task, reducing Relocalisation Time by 41.39% and 52.44%, and the
number of Rechecks by 95.35% and 77.59%, for No Distraction and
Distraction respectively. Participants noted that the markers were
occasionally positioned incorrectly, either through not being aware
that they looked there last or possibly by tracking inaccuracies.
This effect could potentially be mitigated through a smart visual
indicator before the user switches, to communicate the return point
even before one turns away. Notably, the factor of distraction had
an effect on the Relocalisation Time for both our SGM and the No
Marker baseline. Here the main insight is that distractions affect
the baseline condition more pronounced than with using SGM.
Furthermore, in Repair, SGM effectively lowered Mental Demand,
Effort, and Frustration (Figure 5), indicating no penalty for the
additional marker visualisation in the scene.

In Inspection, users of SGM needed 78.95% fewer Rechecks (Fig-
ure 4b) and exhibited lower Mental Demand. As the task allowed
the participants to build up spatial memory over time, the effect
was lower but still significant across multiple factors. It is interest-
ing to think about how SGM may transfer to the many ways that
our spatial memory operates in multi-tasking activities across time.
In principle, this study inspected the immediate gaze fixation as
a reminder. With different spatial memory demands across tasks,
future gaze markers may dynamically utilise historical eye-gaze
and other context information to improve the intent recognition of
visually returning to a point in space.

The original Gazemarks, with a screen-based car navigation
design, improved Relocalisation Time by 68.7% [25]. In our case,

the limited FOV of the HoloLens 2 constrained the utility of SGM —
participants already had to be looking in the general direction of
where they thought that the marker should be. Additionally, while
our task-switch detection was chosen based on the limited FOV
of the HoloLens 2, it may have been too small of a threshold. This
was mostly evident in the Inspection task, where participants were
doing a lot of head movement (e.g., going left to right, then back to
left, like a typewriter), placing the previous fixation off to the side,
possibly placing a marker in a less relevant location. Nonetheless,
the subtle design of the marker makes it no problem to leave further
markers in distinct areas. In case this is not preferred, the parameter
could be adjusted to fit the task, as one option to optimise for users.

Our simulation of a real-world task for evaluation provides a
new perspective on related experiments in the prior art of AR
support for order picking [39, 40], that showed how AR reminders
can aid the user in the visual search tasks. The use of eye-tracking
enables both a mechanism to where and when to leave a cue to
the user. Our evaluation task captures a dynamic scenario where
users shift between different states of visual memory allocation. In
there, we show that even with a minimalistic design, such as SGM,
people’s physical work can be positively supported in a simple
and continuous way. This is novel in contrast to prior work, as we
firstly demonstrate that gaze can provide context for an effective
return point, and demonstrate interaction benefits for markers
across task variations. At its core, our eyes play a fundamental role
in our actions during spatial tasks – it remains a highly interesting
question of how an active presentation of our gaze trajectory over
time can improve spatial memory.

6.2 Application Examples
Beyond the scenario we studied in this paper, SGM is principally
applicable to many other scenarios. For example, a LEGO-based
assembly task as demonstrated in Figure 6. We deployed SGM for a
concrete scenario involving multi-tasking, users can spontaneously
use it when needed, with no overhead of a lengthy setup or pre-
pared mark-ups of areas. This kind of assembly work simulation is
often found in prior work [2, 12, 27], engaging the user in a con-
tinuous task of finding the right LEGO piece from a tool area to
the work area. For each LEGO piece, a user shifts their attention
and a marker is left as a way for the user to immediately return to
the relevant location. In principle, such a multi-tasking scenario
between two or more task areas extends to various tasks, as further
illustrated in Figure 7. This ranges from professional activities such
as maintenance or repair tasks (a-c) to casual activities such as
cooking or other tasks with task interruptions (d-e). For example,
when cooking, switching between the recipe book and stove would
allow the user to get back to the last item in the recipe. SGM can,
in principle, be useful for many use cases that we are unaware of,
considering how complex human spatial memory and visual search
are. There could be many cases we do not expect at this stage, that
become only obvious after use.

6.3 Limitations & Future Work
Our study has several limitations. In designing our study, we aimed
for a balance between internal and external validity. While our
tasks are more externally valid than a virtual counterpart, the tasks
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Figure 6: We integrated the system into a LEGO assembly task, demonstrating its adaptability for use in another scenario
without modification. Here the user shifts between work (Step 1, 3) and tool area (Step 2, 4) – with markers laid in both areas’
last fixation points.

(a) Selection tasks. (b) Maintenance. (c) Installation. (d) Cooking. (e) Interruptions.

Figure 7: SGM has great potential to aid when switching between spaces, highlighted in blue and red. We envision use cases for
SGM to include complex professional contexts with task or focus switching (a-c), and casual scenarios (d-e).

remain abstract and relatively niche. Future work could investigate
the use of SGM in a different study design, such as a longitudinal
study in everyday use. Another limitation of the task design is how
we decide that the Post-it should hide the visual information, which
is rather uncommon in reality. It could be interesting to see how
well SGM perform in tasks where the visual information remains.
Our study task focused on areas with few spatial references for
remembering and precluded for instance easy locations such as at
the borders. While this represented the scope of this work, it would
be interesting to expand to exploration of designs for other visual
memory demands. We also see improvements for the study appara-
tus, to reduce manual organisation and data logging. Furthermore,
our findings are limited by the relatively low number of samples we
gathered and validation with more people and more diverse back-
grounds will provide further insights into the applicability. While
our marker design was sufficient for our study, a greater design
exploration may find other visualisations more beneficial. It could
be interesting to investigate more explicit activation (more explicit

than turning one’s head, e.g., through a gesture, (AR) button press,
or blinking).

7 CONCLUSION
This paper investigated SGM, a task-agnostic, automatic, ARmarker
placement concept, building upon a prior concept from Kern et al.
[25]. We described a general set of conceptual and technical re-
quirements for effectively detecting when users turn their attention
away from an area, through the users’ fixations, instantiating a
Spatial Gaze Marker at the last fixation, then visualising the marker
upon return and removing the marker after use. Through a two-
task user study, we showed that SGM effectively guide users to
more efficiently complete tasks, even with lower task load placed
upon the user, although, more effectively when spatial memory is
limited, as in our Repair task. Overall, this work demonstrates the
usefulness of simple eye-tracking systems for aiding users in their
tasks without requiring the user to set up their workspace or be in
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a specific environment. SGM could become highly used in everyday
tasks and industrial environments.
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