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Abstract 

A common goal of outdoor augmented reality (AR) is the presentation of annotations that are registered to 
anchor points in the real world. We present an enhanced approach for registering and tracking such anchor points, 
which is suitable for current generation mobile phones and can also successfully deal with the wide variety of 
viewing conditions encountered in real life outdoor use. The approach is based on on-the-fly generation of 
panoramic images by sweeping the camera over the scene. The panoramas are then used for stable orientation 
tracking, while the user is performing only rotational movements. This basic approach is improved by several 
new techniques for the re-detection and tracking of anchor points. For the re-detection, specifically after temporal 
variations, we first compute a panoramic image with extended dynamic range, which can better represent varying 
illumination conditions. The panorama is then searched for known anchor points, while orientation tracking 
continues uninterrupted. We then use information from an internal orientation sensor to prime an active search 
scheme for the anchor points, which improves matching results. Finally, global consistency is enhanced by 
statistical estimation of a global rotation that minimizes the overall position error of anchor points when 
transforming them from the source panorama in which they were created, to the current view represented by a 
new panorama. Once the anchor points are redetected, we track the user's movement using a novel 3-degree-of-
freedom orientation tracking approach that combines vision tracking with the absolute orientation from inertial 
and magnetic sensors. We tested our system using an AR campus guide as an example application and provide 
detailed results for our approach using an off-the-shelf smartphone. Results show that the re-detection rate is 
improved by a factor of 2 compared to previous work and reaches almost 90% for a wide variety of test cases 
while still keeping the ability to run at interactive frame rates. 
 
Keywords: Augmented reality; Annotation; Tracking; Mobile phone;  
PACS: the PACS codes can be found at  the home page of NIMA (left column, under Contents Services): 
http://www1.elsevier.com/homepage/sak/pacs/homepacs.htm 

1. Introduction 

Augmented Reality (AR) browsers are a new class 
of outdoor AR application intended for smartphones. 

The core function of an AR browser is simply to 
display mostly textual annotations that are registered 
to places or objects in the real world used as anchor 
points and are given as absolute global coordinates. 
Current commercial solutions rely on non-visual 

 
Journal logo 



 Elsevier Science 2 

sensors of the smartphone, namely GPS, 
magnetometer and linear accelerometers [22] [13], to 
determine where annotations should appear in the 
camera image.  

However, performance of these sensors is poor. 
Magnetometers suffer from noise, jitter and temporal 
magnetic influences, often leading to deviations of 
tens of degrees in the orientation measurement. Even 
if we assume sufficient positional accuracy from 
GPS, which may often not be the case for consumer-
grade devices in densely occluded urban 
environments, large orientation deviations imply that 
annotations will simply appear on the wrong location. 

A smartphone's built-in camera allows attacking 
the localization problem by computer vision. 
However, visual detection and localization in outdoor 
scenes is still challenging, since it must address 
temporal variations such as large illumination 
changes. This problem is exacerbated by the fact that 
the coverage of the environment with reference views 
may be very unbalanced, and that the limited 
computational power of smartphones restricts the 
techniques that are applicable in practice. AR 
browsing also requires that annotations stay 
registered after the initial detection, which requires 
not only one-time detection but also real-time 
tracking even under fast motions. The challenge of 
meeting all these requirements simultaneously has 
limited the generality of previous outdoor AR 
tracking solutions on smartphones. 

For an improved user experience, we can exploit 
the characteristics of smartphones and the AR 
browsers running on them. On the one hand, 
smartphones allow fusion of camera and non-visual 
sensors. On the other hand, AR browsers are usually 
operated while the user is standing still and only 
performing rotational movements. Previous work 
exploits this rotational motion to generate panoramas 
on the fly and then use them for vision-based 
orientation tracking [25]. Later work extended the 
panorama creation in a way that allowed users to 
annotate objects within the panorama. These 
annotations can be shared with other users visiting 
the same spot as annotations anchor points were 
redetected in newly created panoramas by matching 
small image patches [12]. These tasks – panoramic 
mapping and matching of annotations anchor points – 
can be carried out simultaneously in real time, 

leading to an uninterrupted user experience. This 
paper presents an enhanced approach, which 
significantly improves the performance of both re-
detection and of tracking over the basic system 
(summarized in section 3). Panoramas are created 
with an extended dynamic range representation, 
which can better represent the wide variety of 
illumination conditions found outdoors (section 4.1). 
The internal orientation sensors are used to prime an 
active search scheme for the anchor points, which 
improves the matching results by suppressing 
incorrect assignments (section 4.2). Finally, global 
consistency is enhanced by statistical estimation of a 
global transformation that minimizes the overall 
position error of anchor points when transforming 
them from the source panorama in which they were 
created, to the current view represented by a new 
panorama (section 4.3). This step considers multiple 
hypotheses for association of anchor points to known 
candidates, and as a result further suppresses wrong 
associations. Once the anchor points are redetected, 
we track the user's movement using a novel 3-degree-
of-freedom orientation tracking approach that 
combines vision tracking with the absolute 
orientation from inertial and magnetic sensors 
(section 5). This fusion improves tracking 
performance even under fast motion and tracking 
failures and provides important input for initialization 
of the visual tracking component. 

We tested our system using an AR campus guide 
application as a test case and provide detailed results 
for our approach using an off-the-shelf smartphone 
(section 6). Results show that the re-detection rate is 
improved by a factor of 2 by the enhancements 
reported in this paper and reaches almost 90% for a 
wide variety of test cases. 

2. Related work 

Previous work can be roughly divided into two 
research directions. Firstly, work on systems allowing 
the user to annotate the environment using an AR 
interface. Secondly, work which deals with re-
detection and tracking of objects in outdoor 
environments.  

Early work displaying annotations using 
augmented reality were conducted by Feiner et al. as 
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in the MARS project [7]. This approach can be seen 
as the conceptual origin for the recent development of 
commercial AR-browser applications running on 
smartphones such as Wikitude [13] or Layar [22]. 
These commercial systems present annotations from 
databases that were created offline and positioned 
using GPS references. In contrast, some recent 
research work deals with placing annotations online, 
within the AR application.  

A number of approaches exist for this online 
annotating. For example, Reitmayr et al. [16] used an 
existing 3D model of the environment to calculate the 
exact position of the annotation by casting a ray into 
the scene. Later Reitmayr et al. [19] described a set of 
techniques to simplify the online authoring of 
annotations in unknown environments using a 
simultaneous localization and mapping (SLAM) 
system. 

The approach presented by Piekarski and Thomas 
[15] uses triangulation for placing annotations. Rays 
are cast from different positions in the environment 
into the direction of the annotation and then 
intersected. 

Wither et al. [26] used aerial photographs to 
support the annotation process. After casting a ray 
into the direction of the object to be annotated in the 
AR view, a secondary view shows an aerial 
photograph, allowing the user to move the annotation 
along the ray. Later Wither replaced this manual 
placement along a ray with a single-point laser range 
finder [27]. 

The work in [12] proposed another method 
allowing the user to place annotations in a panoramic 
view of the environment. This technique, which is the 
foundation for this paper, is further summarized in 
section 3. The main drawback of this technique is its 
poor detection performance under strong temporal 
variations. 

Several previous PC-based outdoor AR systems 
rely on a combination of vision, GPS and inertial 
measurement unit (IMU) sensors to obtain a global 
6DOF registration within the earth reference frame 
[7][23]. These sensors have recently also become 
available in smartphones, but the inexpensive, low-
power MEMS devices used in smartphones perform 
poorly compared to dedicated industrial sensors used 
in previous larger AR setups.  

In all these devices GPS provides 3D positional 
information, while orientation is estimated from 
linear accelerometers (measuring the local gravity 
vector) and magnetic compasses (measuring the local 
magnetic field vector). Typically, electromagnetic 
fields and conductive materials in both the 
environment and the hardware setup itself distort a 
magnetometer’s measurement. Azuma et al. [3] 
provide an insightful description of the performance 
of such sensors and the resulting significant 
registration errors, especially if annotated objects are 
far away [4]. 

Several approaches exist to overcome the inherent 
limitations of using sensors alone. Careful calibration 
of the magnetic sensors’ scale, bias and non-
orthogonal parameters, as well as influences such as 
hard- and soft-iron effects in close proximity, can 
reduce the deviations between measurements and the 
true magnetic field vector. Calibration can be based 
on the assumptions of measuring the same vector 
under different orientations [29], measuring 
invariants of a setup such as the angle between the 
north vector and gravity vector [10], or manual 
calibration using measurements in relation to ground-
truth [3]. However, in many cases a one-time 
calibration is not sufficient, as the errors change with 
time and location. Therefore online calibration 
methods [8] are required to adapt to varying 
distortions. The hybrid orientation tracking presented 
in section 5 can be seen as a kind of online 
calibration. 

Camera-based tracking methods can provide 
higher accuracy and update rate than pure non-visual 
sensor-based systems, but they usually rely on a 
model of the environment. Here, the device’s pose is 
measured in relation to the model using visual 
features [24]. Klein and Murray [11] presented a 
SLAM-based tracker that builds the model of the 
environment on the fly but only works in small 
workspaces. Arth et al. [2] presented a method for 
localizing a mobile user’s 6DOF pose in a wide area 
using a sparse 3D point reconstruction and visibility 
constraints. It is well known that fusion of vision with 
non-visual sensor data allows for more robust 
performance under fast motion and tracking failures 
[17][20][28] and provides important input for 
initialization of the visual tracking component 
[6][18]. However, little research work on tracking 
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with sensor fusion on smartphones has been done to 
date, possibly because of poor sensor quality, limited 
computational power or the relatively recent 
availability of sensor-equipped smartphones. 

In unknown environments, visual tracking cannot 
provide absolute measurements, but it can provide 
constraints that allow calibrating sensors online. 
Azuma et al. [5] used relative rotation measurements 
obtained through 2D feature tracking to learn the 
distortions in a magnetic compass. In earlier work 
[21], we looked at overcoming short-term distortions 
through tracking the difference between vision-based 
orientation tracking and a compass. Any significant 
change to this difference over time was interpreted as 
a failure of one subsystem, and the system logic 
consequently switched to the more reliable one. 
However, this scheme did not allow for compensating 
an initial distortion in the magnetic sensor. The 
approach described in this paper estimates the 
difference over time and can therefore reduce larger 
distortions in the compass. 

3. Panoramic augmented reality annotations 

In the following we will briefly introduce our 
previous work on panoramic mapping and tracking as 
the system described in this paper is based on a 
panoramic map of the environment, created in a 
simultaneous mapping and tracking step and used for 
continuous real-time orientation tracking. We further 
give an overview on our previous work of using the 
panorama as an intermediate representation of the 
environment on which template-based matching of 
annotations anchor points is performed as a 
background activity. Concurrently the orientation 
tracking allows real-time updates to the AR user 
interface used for displaying the annotations.  

3.1. Panoramic mapping and tracking 

The panoramic mapping and tracking is based on 
the assumption that the user performs only rotational 
movements with the camera phone at an annotated 
spot, while translational movements can be neglected. 
The user’s position is determined with GPS. This 
assumption allows the current camera frame to be 

mapped incrementally onto a cylinder to create a 2D 
environment map (see Figure 1).  

Identifying and processing only those parts of the 
current camera frame, which are not yet mapped, 
helps to increase the speed of this algorithm, as only 
a few (usually <1000) pixels have to be mapped per 
frame.  

After updating the panoramic map, the algorithm 
computes the rotational tracking information for each 
frame. This step employs an active search scheme 
together with a motion model assuming constant 
motion. FAST keypoints [14] are extracted at each 
frame for the current camera frame and compared 
against the keypoints in the current panoramic map. 
To compute the FAST keypoints on the unfinished 
panoramic map, the map is divided into tiles. If all 
the pixels within a tile are mapped, the tile is 
considered finished. Finished tiles are searched for 
FAST keypoints in a background thread. The 
available keypoints are then used for updating the 
tracking information. The full algorithm of 
panoramic mapping and tracking is running in real-
time at 30 fps on current generations smartphones 
such as the HTC HD2 making the panorama 
generation only dependent on how fast the user 
captures the environment by rotating the camera. A 
more detailed overview of the implemented approach 
and timings are given in [25]. 

 
Figure 1. Projection of the camera image onto the cylindrical 
map. 
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3.2. Template based annotation matching 

In [12] we present an approach, which uses the 
panoramic representation of the environment to 
augment the live view with annotations. The system 
determines the position of an annotation by using an 
image patch stored on a remote server. As soon as a 
new user approaches an annotated spot, the 
application downloads all image patches of annotated 
panoramas in the close proximity and matches them 
against  new panorama while this is produced using  
the algorithm described in 3.1. The matching itself 
relies on normalized cross correlation (NCC). To 
avoid excessive matching against the full panorama 
at each frame, the matching is scheduled to only test 
finished tiles, which were also used for creating the 
keypoints as described in 3.1. Consequently, each 
panorama tile is only tested once against the list of 
image templates. 

Another speed up is achieved by using a hierarchy 
of tests. A Walsh transform is computed as a pre-
check before applying the more expensive template 
matching using NCC. This reduces the numbers of 
NCC operations, as only the cases that pass a 
threshold when matching Walsh transforms are tested 
with NCC.  

Matching the annotation templates against the map 
rather than the camera image allows us to schedule 
the matching to guarantee a desired frame rate: Each 
finished tile is not checked immediately, but put into 
a queue instead. During each frame, the system 
schedules only as much work from the queue as 
allowed by the given time budget. Since the 
operations are simple and their timings are 
predictable, we can easily limit the workload so that 
the time budget is not exceeded. 

Our system can therefore run at constant speed on 
any phone that is able to perform real-time panoramic 
mapping and tracking. On fast phones, annotations 
are detected quickly, whereas on slower phones it 
takes longer. Matching one cell against 12 
annotations takes ~28ms on an HTC HD2. Targeting 
a frame rate of 20Hz (50ms per frame) allows 
scheduling ~10ms for detection of every frame. 
Figure 2 shows the workflow of the system presented 
in [12]: Peter starts by creating a panoramic map and 
labels objects of interest. The annotations, Peter’s 
GPS location and a description of the visual 

appearance of the annotated area are transmitted to a 
server. Later, Mary wants to retrieve annotations 
authored by Peter. Her phone notifies her when she is 
close to locations annotated by Peter, using GPS 
information. A map view allows her to reach a spot 
close to where Peter was when he created the 
annotations. After pointing up, the phone uses a 
newly created panorama for efficiently matching 
Peter’s annotations to the environment. Mary’s phone 
displays the corresponding annotation, as soon as the 
supporting area of a particular annotation is re- 
detected. Mary is now able to create additional 
annotations herself. 

The main drawback of this approach is that it 
relies entirely on the vision-based matching, and is 
therefore susceptible to temporal variations such as 
shadows or vegetation changes. Furthermore, the 
template matching is carried out on the whole 
panorama without using prior knowledge to optimize 
the search area. All annotations are treated 
independently, which means that the position 
resulting from an earlier matching process does not 
assist later matches. 

All this resulted in matching scores, which are 
very good (about 90%) for searching annotations 
under the same environmental conditions (position of 
the sun, weather conditions). However, if 
environment conditions are different, the matching 

 
Figure 2. The workflow of the panoramic AR annotation 
system involves two users – Peter creates annotations and at a 
later time Mary browses through these annotations. 
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scores in tests dropped by almost a factor of 2 (about 
56%). This is clearly not sufficient for using this 
approach in social computing application, where 
annotations should be reliably reproduced for 
extended periods of time. 

4. Enhanced re-detection of annotations in 
panorama maps 

The focus of this work is the improvement of the 
low re-detection rate of annotations in the case of 
different environment conditions by keeping the 
general workflow as presented in 3.2. Thus the users 
are guided to a spot containing previously created 
annotations using GPS. While the users points his 
phone to the environment the system creates a 
panorama, which we use simultaneously to detect the 
annotations. The differences against previous work 
are three improvements for the stability of re-
detection.  

Firstly, the basic quality of the panoramic map 
must be enhanced, so that later matching can tolerate 
stronger deviations in appearance. This requires 
capturing more information in the original panorama, 
which is achieved by deploying an extended dynamic 
range representation of the map.  

Secondly, commonly available smartphone 
hardware is exploited more consequentially. Non-
visual sensor measurements are used to narrow down 
the search area of the vision-based re-detection. 
Moreover, the sensor-based tracking is used as a 
backup in case the vision-based system fails.  

Thirdly, we estimate a global transformation T, 
which aligns the source panorama and the target 
panorama, using reliable statistical techniques. By 
applying T, we can map all annotations stored on the 
server corresponding to a source panorama to a newly 
created target panorama. In the following, a detailed 
description of these steps is given. 

4.1. Extended dynamic range panoramic maps 

The basic template matching of image patches 
describing annotations and the panoramic map is 
strongly dependent on the image quality of the 
panoramic map.     

A main problem in this process is the automatic 
adjustment of exposure and white balance of built-in 
cameras in current generation smartphones. The 
camera chip performs arbitrary processing to deliver 
a "nice" image, without letting the application 
programmer control or even understand the process. 
While this automatic image processing seems to have 
no strong effect towards the tracking and therefore 
does not adversely affect the stitching success, it 
results in visible boundaries in the panoramic map 
(see Figure 3), where contributions from multiple 
frames are stitched together. These patches show 
discontinuities in brightness caused by variations in 
the exposure settings. Later in the matching, the 
discontinuities introduce artificial gradients, which 
heavily affect the template-based matching of the 
anchor points. The situation is made worse by the fact 
that discontinuities can appear both, in the image 
patches describing the annotations, which are 
extracted from the panoramic map, and in the newly 
created panoramic map used for re-detecting the 
annotations.  

The best solution to suppress such discontinuities 
caused by exposure changes would be to use a 
camera that allows the programmer to fix the 
exposure rate. Such a programmable camera would 
even provide the possibility to create true high 
dynamic range images, if the response function could 
be determined for the integrated camera. However, to 
the best of our knowledge, the only mobile device 
capable of controlling camera parameters is the 
Nokia N900 with Frankencam API [1]. It seems 
unlikely that fully programmable cameras will 
become widespread in the foreseeable future. 

Thus we created a different approach that allows 
the creation of extended dynamic range (EDR) 
images on phones without any access to the exposure 
settings. While this approach must necessarily rely on 
simple estimation, it can compensate for the most 
severe artefacts introduced by auto-exposure. For this 
purpose, we map the first camera frame into the 
panoramic map and use the pixel intensities as a 
baseline for all further mappings. All subsequent 
frames are heuristically adjusted to match the 
intensities found in the first frame, by estimating the 
overall change of the exposure setting between the 
first and the current frame.  
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We achieved this by using the FAST keypoints, 
which are computed in the current camera frame and 
the panoramic map. As these keypoints are already 
generated for tracking purposes (see 3.1), this step 
does not generate an additional overhead. We 
compute the difference of intensities for all pairs of 
matching keypoints found in the camera frame and in 
the panoramic map. The average difference of these 
point pairs is used to correct the current camera frame 
by adding the difference to each pixel before 
mapping it into the panorama. This simple correction 
significantly reduces the discontinuities of intensities. 
The panoramic map is built using 16 bits per color 
channel, which was empirically found to be sufficient 
to avoid any clipping errors when adjusting pixel 
values in the described way, without consuming too 
much memory bandwidth for a smartphone. The 
display of the panoramic map with extended dynamic 
range is done with a simple linear tone-mapping 
operator. A resulting panorama image is showed in 
Figure 3. As it can be seen, discontinuity artefacts are 

noticeably reduced, which is confirmed by our 
experimental results. 

4.2. Sensor fusion for improved re-detection 

Current generation smartphones regularly include 
GPS, compass, accelerometer and recently even 
miniature gyroscopes. The accuracy of these sensors 
is usually inferior to a well-tuned visual tracking 
technique, but non-visual sensors are complementary 
because of their robust operation. We therefore 
integrated the compass and the accelerometers to 
create a better re-detection of annotations.  

The improved re-detection is achieved by 
narrowing down the search area for the vision-based 
template matching using the information obtained 
from the internal sensors. The region in the panorama 
where the annotation is likely to be located-based is 
determined based on a direction estimate from the 
internal sensors.  

The panoramic map is created at a resolution of 
2048x512 pixels from 320x240 pixel sized camera 

 

 
 

Figure 3. (Top) A panorama image containing visual artefacts, which are caused by the automatic and continuous exposure adjustment of 
current mobile phone cameras. (Bottom) A panorama image that was created by extending the dynamic range during the mapping into the 
panorama and applying a tone mapping afterwards. 
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images. A typical camera has a field of view of ~60°, 
so the camera resolution is close to the map 
resolution: 320 pixels / 60° · 360° = 1920 pixels. The 
theoretical angular resolution of the map is therefore 
360° / 2048 pixels = 0.176 degrees per pixel. 
Assuming a maximum error of the compass of ±10° 
we can expect to find the annotation in a window of  
±57 pixels around the estimated position. We 
consider an area 3 times larger that this window, but 
weight the NCC score with a function that penalizes 
by distance from the active search window. Thus we 
only consider matches outside the primary search 
area if they have a very good matching score.  

4.3. Matching annotations using a global 
transformation 

In the previous approaches, the annotations were 
considered independent of each other during the re-
detection. Thus, the detected position of an 
annotation was not used to optimize the re-detection 
of other annotations. Moreover, empirical analysis 

revealed that the main reason for wrong results from 
the NCC template matching came from more than 
one good match for one annotation (see Figure 4). 
This led to the problem that single annotations could 
not be detected reliably or were detected at the wrong 
location, whereas other annotations were robustly 
detected at the correct spot. This situation calls for 
additional geometric verification. 

We approach the problem by considering the 
annotations in the source panorama (the panorama 
which was used to create the annotations) as a set for 
which a consistent geometric estimate must be 
achieved. Therefore, the detection is extended by the 
requirement to find a global transformation T, which 
maps the set of annotations from the source panorama 
into the target panorama (representing the current 
environment) with a minimized average error. As we 
assume the panoramas to be made at the same 
position, the transformation is a pure rotation aligning 
source and target panorama with three degrees of 
freedom.  

 
Figure 4. (Bottom) A source panorama that was used to create the annotations. (Top) A newly created panorama with the best candidates 
for placing the annotation resulting from the template-based matching. For every annotation anchor point we store a maximum of three 
best matches. The green dots in the upper image have the best matching scores and are therefore used for label placement. The red ones 
are the second and third best matches of an annotation, which makes them a candidate for a possible correct match. 
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To compute rotation T, we describe the position of 
an anchor point in the source panorama by 
representing anchor coordinates as a 3D vector from 
the camera position to a point on the cylindrical 
panorama (see Figure 5). We extended the workflow 
as presented in section 3.2 to also store this 3D vector 
together with the image patch for each annotation. 
This dataset describing the annotation is uploaded to 
a remote server and tagged with the GPS address of 
the current position as depicted in Figure 2. We do 
not upload any panoramic image, as only this dataset 
is required to redetect the annotations. As the size of 
the dataset is in the range a few kilobytes (~2 
kilobytes for the image patch + text information) it 
can be easily handled via a 3G connection. 

Once a user approaches a place where annotations 
were created, the mobile phone accesses the closest 
datasets based on the GPS position. We take into 
account that GPS can be inaccurate and therefore we 
download all datasets that were created within 
proximity of 50m. After downloading the datasets the 
anchor points are redetected using the template-based 
matching and annotations are initially placed using 
the best match. But instead of using only the best 
match, we also keep the best three candidate matches 
based on NCC score for later use. For all found 
candidate matches, we compute the vector-based 

position in the target panorama as we did for the 
original annotations in the source panorama. 

While online tracking and mapping continues, a 
RANSAC based approach running in a background 
thread determines and updates a global rotation T. 
This rotation aims to optimally map the set of all 
annotations from the source panorama to the target 
panorama by aligning the panoramas.  

We randomly select two annotations and one of 
their three best candidate positions in the target 
panorama as input for finding the best rotation using 
RANSAC. To find the best match, the rotation T 
between the two coordinate systems is calculated so 
that two vector pairs   

! 

! a 1,   

! 

! a 2 and   

! 

! 
b 1,   

! 

! 
b 2  can be 

aligned to each other while minimizing an L² norm of 
remaining angular differences. We use the absolute 
orientation between two sets of vectors [9] to 
compute this rotation. The resulting rotation is the 
hypothesis for the RANSAC algorithm. All 
annotations are mapped to the target panorama using 
the current estimate for T, and the difference of the 
resulting 2D position in target map space to the 
annotation position found through template matching 
is determined. If the distance is below a threshold, the 
annotation is counted as inlier and its error is also 
counted as inlier. Its error is then added to an error 
score. 

 
Figure 5. Illustration describing the alignment of two cylindrical mapped panoramas based on the position of the annotations anchor 
points.  The two vectors   

! 

! a 1 and   

! 

! a 2 are pointing to two annotation positions in the cylindrical source panorama. The middle cylinder 
describes a panorama, which is created on the fly on the smartphone. The vectors   

! 

! 
b 1 and   

! 

! 
b 2are pointing to two possible annotation 

positions in this new panorama. Rotating one cylinder into the other in order to align both vectors of each cylinder using absolute 
orientation with an error 

! 

" , results in a rotation, which can be used in a RANSAC calculation to determine a model with a sufficient small 
error. 
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For a hypothesis with more than 50% inliers, a 
normalized error score is determined by dividing the 
raw error score by the number of inliers. The 
normalized score determines if the new T replaces the 
previous best hypothesis. This process is repeated 
until a T with an error score below a certain threshold 
is found. Such a T is then used to transform all 
annotations from the source to the target panorama. 
Annotations for which no successful match could be 
found can now also be displayed at an appropriate 
position, although with less accuracy because their 
placement is only determined indirectly. 

Obviously, the source and target panorama are 
never taken from the exact same position, and the 
resulting systematic error can affect the performance 
of the robust estimation. We empirically determined 
that a 50% threshold for inliers and a 10 pixel 
threshold for the normalized error score in 2D map 
coordinates yields a good compromise between 
minimizing overall error and reliable performance of 
the RANSAC approach.  

Finding the best rotation to align the two 
panoramas requires about ~30ms for 8 annotations 
but the panoramas are not aligned each frame, as it is 
only necessary to update the model once new 
candidates for annotations anchor points are detected 
based on the vision-based template matching.  

5. Hybrid orientation tracking 

Once we have redetected the anchor points of the 
textual annotations, we need to track orientation 
changes to guarantee a continuous precise 
augmentation of the annotations in the users current 
view. The re-dection using the absolute orientation as 
described in section 4.2, requires measurements from 
the magnetic compass and linear accelerometers to 
estimate the absolute orientation of the device, 
because the vision-based tracking only estimates 
orientation with respect to an arbitrary initial 
reference frame. Moreover, the vision-based 
orientation tracking has difficulties in dealing with 
fast motion, image blur, occlusion and other visual 
anomalies. On the other hand, the vision-based 
tracking is more accurate than the sensor-based 
orientation estimate. Therefore, we fuse the two 

orientation measurements to obtain a robust and 
accurate orientation. 

In principle, the vision-based tracking would be 
sufficient for accurate orientation estimation, but it 
only provides relative measurements. Therefore, we 
use the sensor-based orientation to estimate the 
global pose of the initial reference frame of the 
vision-based tracker and then apply the incremental 
measurements to this initial and global pose. A first 
estimate can be obtained through simply reading the 
sensor-based orientation at the same time the vision-
based tracker is initialized.  

However a single measurement of the sensor-
based orientation will be inaccurate. Therefore, we 
continuously refine an online estimation of the 
relative orientation between the initial vision-based 
tracking frame and the world reference frame.  

We assume a north-oriented world reference frame 
N given locally by the direction to magnetic north 
and the gravity vector. The inertial and magnetic 
sensors measure the gravity and magnetic field 
vectors relative to a device reference frame D. The 
output of the sensors is a rotation RDN

1 that maps the 
gravity vector and the direction of north from the 
world reference frame into the device reference frame 
(see Figure 6). 

The visual orientation tracker provides a rotation 
of the device RDP from the reference frame P of the 
——— 
1 The subscripts in RBA are read from right to left to signify a 

transformation from reference frame A to reference frame B. 

 
Figure 6. Overview of the rotations between world reference 
system N, device reference system D and panorama reference 
system P. 
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panorama into the device reference frame D. In 
principle, the device reference frame differs for 
camera and other sensors. For simplicity, we assume 
a calibrated device in the following, for which the 
two reference frames can be considered identical. 

Our aim is to estimate the invariant rotation RPN 
from the world reference frame N to the panorama 
reference frame P (see Figure 6). Composing the 
rotations from world to panorama to device reference 
frame, we obtain 

 
RDP 

! 

"RPN  = RDN     (1) 
RPN  = RDP

-1 

! 

"RDN . (2) 
 

Using equation (2) we can estimate the relative 
rotation RPN from simultaneous measurements from 
the vision-based and the sensor-based tracking. At 
every timestamp t, we record measurements gt for the 
gravity vector g and mt for the magnetic field vector 
m, both g and m defined in the world reference frame. 
A rotation RDN = [rx ry rz] is calculated such that  

 
gt = RDN 

! 

" g   , and (3) 
mt 

! 

" rz = 0 . (4) 
 

The resulting rotation accurately represents the 
pitch and roll measured through the linear 
accelerometers, while the magnetic field vector may 
vary within the plane of up and north direction (X-Y 
plane). This reflects our observation that the magnetic 
field vector is noisier and introduces errors into the 
roll and pitch of the device. For the video frame 
available at timestamp t, our vision tracker provides a 
measurement of the rotation RDP. Given the two 
measurements RDN and RDP, we can compute RPN 
through equation (2). To filter repeated 
measurements of RPN, we use an extended Kalman 
filter (EKF) operating on the rotation RPN.  

To represent the filter state, we model rotations 
with 3 parameters using the exponential map of the 
Lie group SO(3) of rigid body rotations. The filter 
state at time t is an element of the associated Lie 
algebra so(3), represented as a 3-vector µ,. This 
element describes the error in the estimation of the 
rotation RPN. µ is normal distributed with 
 µ  ~ N(0,P

t
)  with a fixed covariance P. It relates the 

current estimate

! 

ˆ R t  to the real RPN through the 
following relation 

 

! 

RPN
 

= exp(µ )  ! R̂
t

,  (5) 

where exp(.) maps from an element in the Lie algebra 
so(3) to a rotation R. Conversely, log(R) maps a 
rotation in SO(3) into the Lie algebra. As we are 
estimating a constant, we assume a constant position 
motion model, where µ does not change and the 
covariance grows through noise represented by a 
fixed noise covariance matrix. 
The measurement equation for the filter state µ states 
that the expected measurement equals the current 
rotation 

! 

ˆ R  and the difference is the identity rotation: 
 

€ 

log(RDN ⋅ ˆ R t
−1) =  µ .   (6) 

The measurement Jacobian of (6) is now simply the 
identity matrix. This Jacobian is used in the extended 
Kalman filter framework to update the state µ. 
Finally, we correct for the new error estimate and 
update the current rotation 

! 

ˆ R t  by left multiplying 
exp(µ) to it. After this we reset the error µ again to 0. 

The global orientation of the device within the 
world reference frame is computed through 
concatenation of the estimated panorama reference 
frame orientation RPN and the measured orientation 
from the visual tracker RDP as described in equation 
(1). Thus we combine the accurate, but relative 
orientation from visual tracking with a filtered 
estimate of the reference frame orientation. The 
implementation as a recursive filter is efficient and 
fast, requiring only little memory and processing 
power. 

6. Experiments and results 

We implemented and evaluated our approach on a 
common smartphone (HTC HD2) as part of a campus 
information system. During the evaluation, we 
focused on two main criteria: Firstly, the re-detection 
rate used for detecting the annotation anchor points, 
and secondly, the accuracy of the hybrid tracker used 
for tracking the orientation.  

6.1. Re-detection performance 

To test the re-detection performance, we created 
12 panoramas at different positions on our campus, 
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aiming at obtaining a diverse set of images and 
environmental conditions. The average distance 
between these panoramas was ~50m. For each 
panorama, we created 4-6 annotations, leading to 58 
annotations in total. For better comparison, we 
created panorama images both using the extended 
dynamic range approach presented in section 4.1 and 
using standard 8-bit dynamic range. We then 
proceeded to attempt matching the collected 
annotations against newly created panoramas 
resulting from the recorded video streams. 

To test the matching performance under different 
lighting settings (see bottom Figure 7), we created the 
panoramas and the annotations on a sunny day one 
hour before sunset and tried to mach them to material 
from a different day taken about noon. This led to 
situations in which certain building parts had 
noticeable shadows but the annotation templates 
however did not show these shadows. We also 
collected material with lighting artifacts including 
lens flares and bright spots at the position of the sun, 
which where mapped directly into the panorama 
image making it very difficult to match annotations in 
such areas.  

As our approach requires the user to be at the 
same position from where the annotations and the 
source panorama were created we evaluated the 
matching performance within a 2m radius to the 
original position. As GPS was sometimes inaccurate 
we had the case that at one position two annotated 
spots were assumed to be within 50m resulting in the 
fact that the application downloaded the datasets of 
both annotated spots and choose the one achieving 
the highest scores in the NCC-based template 
matching for further processing. 

The evaluation procedure was set up so that all 
combinations of re-detection enhancements were 
systematically tested. The baseline system without 
any enhancements resulted in a re-detection rate of 
about 40%, which is less than reported in [12] 
because of the more difficult environmental 
conditions used to create the data sets. The results are 
summarized in Figure 7. The sensor fusion improves 
re-detection by about +15%, to a point where the 
RANSAC approach for determining the global 
transformation finds enough inliers, so that the 
combined sensor fusion and global transformation 
technique delivers 86% re-detection rate. The EDR 

representation seems only effective in improving 
already very good results a bit further, while EDR 
applied alone on difficult situations can even slightly 
reduce matching performance. However, the 
combination of all three enhancements leads to an 
overall re-detection of 90%, which is more than twice 
the original performance and probably satisfactory 
for everyday operation.  

6.2. Hybrid tracking accuracy 

Using the sensors, we can directly calculate the 
3x3 rotation matrix representing the phone’s 
orientation. We tested the absolute accuracy of our 
hybrid orientation tracker using a set of reference 
points in the environment, which were surveyed 
using a professional tachyometer at centimeter level 
accuracy. The distance from the camera to the 
reference points varied from 26 to 92 meters. 

For better reproducibility, the mobile device was 
mounted on a tripod positioned above the reference 
point. We measured the accuracy of the tracker by 
aiming the device’s camera at one of the reference 
points and subsequently turning the device towards 
all other reference points without resetting the 
tracker. The device was kept still for about 30 

EDR
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EDR + Sensor fusion

Sensor fusion

Global transformation

EDR + Global transformation

Global transformation + Sensor fusion

EDR + Global transformation + Sensor fusion

0 10 20 30 40 50 60 70 80 90 100

90%
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60%
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55%

52%

40%

34%

 

 
Figure 7. Re-detection evaluation. (Top) Overview of the re-
detection results. (Bottom) Fragments of two panorama images 
showing the different environment conditions during the 
evaluation. 
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seconds at each reference point, while the 
orientations reported by the sensors, the vision 
tracker and the hybrid tracker were logged.  

The measurement noise used in the evaluation was 
derived from static observations of the sensors. As 
the measurement function (2) combines the two 
inputs, the measurement noises of sensors and visual 
tracker need to be combined. In practice, the visual 
tracker has much lower noise and is subsumed in the 
sensors’ noise. The process noise was tuned and set 
to 104, yielding the lowest root mean square error for 
recorded sequences. Figure 8 (left and middle) 
depicts a plot of a measurement session, while the 
phone is turned in clockwise direction from one 
reference point to the next. Figure 8 (right) shows the 
error to the closest reference point, effectively 
showing the error to the ground truth heading. 

The results demonstrate two improvements over 
pure sensor-based orientation tracking. Firstly, high 
frequency noise is reduced with a very small lag 
relative to fast motions (see Figure 8 left and middle). 
The visual tracking is dominating the motion 
estimation and provides low jitter rotation estimates. 
Secondly, over time, the error of the filtered rotation 
is smaller than the sensor-only rotation, because 
deviations in the compass measurements are averaged 

over different orientations. Overall, we obtain a 
responsive, less jittery estimate that is on average 
more accurate than the orientation derived from the 
sensors alone and more robust in case of fast motions.  

7. Conclusions and Future Work 

We presented an approach for the detection and 
tracking of annotations in mobile AR applications. 
The used approach allows users visiting the same 
spot to share annotations augmented in the live 
camera view. The annotations created by the first 
user are detected in the view of the second user by 
matching image patches against a newly created 
panorama of the environment. To improve the 
detection we narrow down the search area and apply 
geometric constraints. Once the annotations are 
detected we track the user’s orientation using a 
reliable hybrid tracking approach allowing us to 
correctly augment the annotations in the live camera 
view. We show that the presented approach 
outperforms previous approaches in terms of 
robustness and accuracy. Combining all approaches 
described in this paper for improving re-detection 
significantly increased the re-detection rate for the 

 
Figure 8. (Left and Middle) Plot of heading, pitch and roll for a free-hand movement of the mobile phone between two reference points. 
We plot orientation for the raw sensor values, a filtered estimate and the hybrid tracker. (Right) Test sequence showing the errors in 
degrees to the north for the sequences recorded on the phone. Visual Tracking is only shown as reference as true absolute orientation is 
usually not known. 
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matching of annotations by a factor of 2 compared to 
previous work, yielding a 90% re-detection rate under 
strong temporal variations in the environment. Once 
detected, the presented sensor fusion approach is used 
for tracking the users orientation and significantly 
improves the orientation estimation quality. The 
approaches presented here are generally applicable to 
outdoor AR, but specifically improve smartphones, 
which have rather low quality sensors and limited 
computation power for computer vision. 

Future work should address the problem of a more 
efficient representation of the anchor points. Storing 
patches is simple and flexible, but an encoding of the 
neighborhood relying on feature descriptors suitable 
for real-time matching may be more efficient. 
Unfortunately, reliable feature matching under strong 
temporal variations and with limited input image 
quality remains an open research topic. Further 
investigations can be done to improve the selection of 
the correct annotation dataset by not only using the 
GPS information but also using the current camera 
image for vision-based localization. Moreover, 
further investigations are needed to better understand 
the relationship of extended dynamic range image 
capturing on the re-detection results. 

Other future work targets the tracker. As the visual 
tracker itself adds some bias as the relative 
orientation, estimation can overestimate or 
underestimate the true angle of rotation, if the focal 
length of the camera is not accurately known. By 
adding a correction factor to the filter estimate, it 
would be possible to estimate this bias and correct it 
in the final rotation output. 

Finally, a purely temporal filtering of errors is not 
the ideal solution. The filter depends on receiving 
measurements under different orientations to reduce 
errors through averaging. Measuring errors for a 
longer time in a certain orientation will pull the 
estimate towards that orientation and away from the 
true average. A more accurate model should consider 
distribution of the orientation measurements while 
also weighting old measurements to account for 
changes over time. Together, both could form a truly 
dynamic online calibration method. 
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