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ABSTRACT

Recent improvements of Virtual Reality (VR) technology have en-
abled researchers to investigate the benefits VR may provide for
various domains such as health, entertainment, training, and edu-
cation. A significant proportion of VR system evaluations rely on
perception-based measures such as user pre- and post-questionnaires
and interviews. While these self-reports provide valuable insights
into users’ perceptions of VR environments, recent developments in
digital sensors and data collection techniques afford researchers ac-
cess to measures of physiological response. This work explores the
merits of physiological measures in the evaluation of emotional re-
sponses in virtual environments (ERVE). We include and place at the
center of our ERVE methodology emotional response data by way
of electrodermal activity and heart-rate detection which are analyzed
in conjunction with event-driven data to derive further measures. In
this paper, we present our ERVE methodology together with a case
study within the context of VR-based learning in which we derive
measures of cognitive load and moments of insight. We discuss our
methodology, and its potential for use in many other application and
research domains to provide more in-depth and objective analyses
of experiences within VR.

Index Terms: Human-centered computing—Human com-
puter interaction—Interaction paradigms—Virtual Reality; Applied
computing—Education—Interactive learning environments; Human-
centered computing—HCI theory, concepts and models

1 INTRODUCTION

How can we find out how a user is perceiving, experiencing, and
emotionally responding to a virtual environment? Virtual Reality
(VR) systems are commonly evaluated for various factors such as us-
ability, cognitive workload, stress, simulator sickness, and the sense
of presence, to name a few. These evaluations extract information
about the performance of a given system, but also provide insight
into the different aspects of users’ experiences. There are three, com-
monly used forms of evaluation: (1) Self-report questionnaires are
the most commonly used, subjective, quantitative measure for evalu-
ating these phenomena and are presented to users after they have had
exposure to a system [8,28,34,58]. (2) Interviews are a subjective,
qualitative form of evaluation often used to attain domain specific
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information [33, 54]. And, (3) Observational techniques provide
an objective, qualitative form of measurement where experimenters
watch or record an environment and users’ actions, and behaviours
within the environment. Observational measures are known to be
used for studying the sense of presence in VEs [64] and are encour-
aged in some cases over the use of self-report questionnaires [60].
Physiological measurements provide us with an objective, quantita-
tive measurement of users’ physiological reactions to stimuli in VR
environments. Examples of these measures are found in evaluations
of VR-based anxiety and phobia treatment systems [76], and again,
in studying the sense of presence [20].

Many of these forms of measurements, particularly self-report
questionnaires and interviews, are a measure of users’ perceptions of
their experiences at certain instances in time, usually post-experience.
While these are useful and valid measurements for assessing dif-
ferent phenomena, they rely on users’ collective recollection of
their experiences. Observational measurements are not relying on
users’ recollection as evaluators can see and record when specific
behaviours emerge with respect to their presented stimuli, but what
is missing from that analysis is a detailed measure of why behaviours
occur. Physiological measurements can provide more depth by mea-
suring the sub-conscious states (in addition to other factors) of a user
throughout exposure.

In this paper we are using VR learning as our exemplary domain
to explain and illustrate our methodology as VR has demonstrated
high promise for application in the education domain. The research
community has been able to apply VR within multiple topic spaces
such as physics [78], chemistry [40,49], biology [59], and geom-
etry [65]. The flexibility, controllability, and more recently also
the cost effective nature of immersive VR environments are lever-
aged to facilitate the learning experiences which lead to observed
increases in learning outcomes [22,47]. While these applications
show promising results, learning outcomes, and the experiences that
lead to them, are largely measured through self-report measures or
examination style tests after a given exposure time [44]. These types
of evaluations are a good indication of the potential efficacy of VR
learning environments, however, the length and the process of the
learning experience is largely overlooked. It is desirable for us in
the research and development community to attain information re-
garding the continuous nature of users’ learning experiences, as this
can provide more detailed analyses and highlight relevant aspects of
immersive VR learning applications.

Here, we propose a methodology which targets the elements of
a user’s experience in VR environments, exemplified in the con-
text of immersive VR learning environments. Our methodology
called Emotional Responses in Virtual Environments —ERVE, is
primarily centred around users’ physiological states which serves
as a continuous measure of their experience. Physiological data
is then combined with other forms of data (such as self-report or
observational data) in a custom built analysis which can be used to



derive measures of various phenomena. In the case of our exemplary
study, we are able to measure participants’ cognitive load and the
emergence of moments of insight in a VR context.

This work provides three primary contributions: 1) A detailed
description of ERVE, a novel methodology to empirically detect
emotional responses in virtual environments as a continuous measure
of user experience, and analyze response data against event data to
generate measures of varying types of phenomena. 2) A case study
on learning in VEs demonstrating an implementation of the ERVE
methodology. We effectively detect relevant emotional responses
which are analyzed against naturally occurring events resulting in
a measure of cognitive load and insight. 3) A critical discussion of
results and applications that would benefit from measuring emotional
responses and the application of ERVE to these scenarios.

2 BACKGROUND

This work touches two categories of previous work that we will
briefly introduce in the following. Firstly, we will discuss how
Virtual Reality systems have been empirically investigated. We
focus in particular on common measurements such as questionnaires
but also discuss observations and their use in VR and the use of
physical readings and their use when investigating VEs. Given
the sheer number, we will only cover the most relevant measures
together with some examples on how they have been used in VR.
Secondly, we will introduce the reader to some key works in learning
within VEs to provide context to our case study.

2.1 Measurementin VR

Questionnaires A common way for software developers to
determine which features and interaction metaphors to integrate into
their applications is through usability assessments [18]. A com-
monly used tool for usability testing is a questionnaire [9,36] which
usually has a subject conduct tasks with a given application and
after having completed the tasks they fill out a usability question-
naire. Other work has built on the concept of usability assessment
by generating “user experience” assessment by questionnaire [39].
These usability assessments have also been used in the context of
VR system development to evaluate immersive user interfaces [68].
Similarly, researchers commonly assess task workload by utilizing
questionnaires. Here the NASA-TLX assessment tool [28] is one
of the most well known and was developed to assess user workload
for tasks ranging from simple cognitive tasks to more complex ones.
Another example for assessing workload using questionnaires is the
Cooper-Harper scale [77]. The sense of presence in VR environ-
ments is referred to as one of the, if not the, defining component of
VR [54,66]. It is known as the subjective psychological sense of “be-
ing there” in the virtual environment. The most common technique
for measuring presence is by questionnaire [42] which are, as with
most other forms of questionnaires, applied after a given exposure
time to assess a user’s sense of presence in that environment.

Although questionnaires as a form of measurement have shown
to be robust, overall measures of various phenomena, they are still a
composite measure of users’ recollections of their overall experience.
There is a lot of potential insight to be gained from more continuous
evaluation throughout users’ exposure to VR systems. It would be
possible to present VR users with questionnaires throughout an expo-
sure, however in that case it requires the user to remove themselves
from the VR environment to complete a questionnaire resulting in
a complete break of the sense of presence. To solve this problem,
Frommel et al. recently attempted to present questionnaires within
VR environments to assess the users sense of presence throughout
immersion and found that presence in the environment was retained
when the questionnaires were presented virtually [23]. The issue
with this technique is that if a user of a system is mentally invested in
atask, i.e. a learning activity, and they are interrupted with a virtual
questionnaire, their sense of presence may be retained, but their

engagement with the environmental task will be broken. Therefore
passive, continuous measures are still advantageous over prompting
users’ for their reports, particularly in certain scenarios.

Observational measures A less invasive way is to use observa-
tional measures which are less-commonly used than questionnaires
due to the difficulty associated with first applying the technique, and
then analyzing and applying the results. The research community
has started to adopt measures that are more objective and are using
them in conjunction with existing subjective measures [31]. Some
presence work has used a technique called "Behaviour Presence
Test in Threatening VEs” [43] which utilizes observation of users’
reactions to environmental stimuli as one of its primary measure-
ment tools. Other forms of observational measures include task
results such as completion times and scores. These measures are
common across many domains such as health (rehabilitation) [12],
immersion/presence [6], and industry applications [25]. They are
also often used to validate system usability. However, observational
studies cannot fully capture users’ emotional states and require ex-
perience in running these studies as they will otherwise risk a wrong
interpretation.

Physiological measurement Different physiological data have
been collected for evaluating various phenomena within VR applica-
tions including electrodermal activity (EDA) [2,21,76], heart rate
(HR) [63,76], brain activity (functional magnetic resonance imag-
ing (fMRI) [30]), and heart activity (electrocardiography (ECG)
[7,27,62], electroencephalograph (EEG) [41]). Measuring emo-
tional activity by monitoring physiological states is not a novel
idea [10,35,37,53]. A common measure of emotional states used
within various contexts is that of EDA, otherwise known as skin
conductance. This measures the sympathetic nervous system (SNS)
and is a sensitive index of sympathetic arousal which is integrated
with emotional and cognitive states [14]. This measure has prior ap-
plication in VR environments in the context of anxiety and therapy
treatment [17, 20, 75, 76], emotional replication studies [21], be-
havioural studies [24], and presence [16,45,46,51]. These measures
have been very successful for measuring strong responses to those
stimuli in VEs [45,48,51], however, what is lacking is the long term,
continuous evaluation using physiological measurement in situations
that are not designed to evoke responses at designated points in time.
Saha et al. report on a study focused on measuring the emergence
of negative emotional responses induced within a VR environment
and are able to conclude “techno-stress” as a contributing factor to
negative reaction [55]. We measure emotional responses through
physiological measurements which are the central component of the
methodology we report on in this work. The emotional responses
we measure are detectable changes in the SNS and are known to
be indicative of emotional activity. We use the physiological data
representative of emotional activity together with other types of
data (psychological reporting, or observational outcomes) to achieve
measurements of different phenomenon in a VR environment.

Sanchez-Vives et al. argues that VR experiences are relevant for
the neuroscience space by presenting multiple studies which utilize
physiological measurements [56]. The prior work of Guger et al.
and Slater et al. utilize physiological measures against events in
VEs such as intentional breaks in presence, or stimuli from virtual
characters [27,61]. The similarity between theirs and our work is that
we both measure physiology about events throughout an exposure.
In their approach, they take either averaged measures about instances
in time, or averaged measures over a whole exposure and measure
against a baseline. In our case, we conduct an in-depth analyses on
our EDA data separating the event-driven (phasic) and long-term
(tonic) components of EDA. After we extract features from both the
EDA and heart rate variability (HRV) data, we use machine learning
algorithms with event data collected from the exposure. With our
methodology, we are focused not only on significant events within
a VE, but we also consider subtle changes in the emotional activity



of users. With this approach we provide a continuous measure of
a user’s state throughout which we can measure against “naturally
occurring” events (i.e. events not triggered by experimenters).

We identify the need to measure more natural situations in which
emotional responses emerge as a result of users’ own experiences
with the environment, i.e. not instances in time designated by eval-
uators, but instances that can occur at any point according to the
natural processes of the user. Our ERVE methodology allows for the
application of physiological measures in a continuous transferable
manner which facilitates its use in more natural situations. Rather
than evaluating against specific points in time that are determined
by the delivery of some arousing stimuli, we measure against other
measurable aspects of the users’ experiences (i.e. achievements or
self-reported moments). This way researchers can evaluate user’s
emotional response to, and engagement with, more general and less
provocative scenarios. One such scenario is a VR learning environ-
ment where a user is given a concept to learn over a period of time.
There are no immediate stimuli intended to provoke a user in such a
space, yet emotional response to that environment is as relevant as
in any other VR context.

2.2 Measuring Learning Experiences in VR

We implement our ERVE methodology in a case study which lies in
the context of VR-based learning. Below we give a brief overview
of literature related to the space of educational VR research, and
the particular type of learning we are investigating in our case study
—insight learning.

A core imperative of education is to prepare students with the
knowledge and skills they will need to be successful in meeting
their academic and professional goals. Central to this imperative, is
the development of problem-solving skills, in particular the ability
to formulate inferences from observations. In a time of change
and innovation, traditional approaches to learning are coming under
increasing scrutiny from contemporary, disruptive thinking. For
example, the work of Perkins [52], Ohlsson [50] and Weisberg [74],
promote breakthrough or insight thinking as a legitimate solution
to solving the growing landscape of wicked problems. At the heart
of breakthrough thinking is the capability to secure insight through
creative, engaged thinking. This approach relies heavily on a creative
process rather than on analytic procedures and typically results in a
higher level of engagement.

The use of VR in education is not new [29,47], although many
focus on replicating traditional approaches to education. Existing
examples of education-based VR implementations cover topics such
as high-school chemistry and physics [3,49,78]. The quality of VR
learning environments is typically measured through questionnaires
and/or interviews [3]. While these methods can help uncover a learn-
ers perception of their experience, they can be prone to inaccuracies
due to the reliance on memory or post-event recollection. Another
common method includes the use of tests to assess learner’s progress
(usually relative to a standard control group) [67]. While these
methods can provide initial results for efficacy, they generate rigid
outcomes that aren’t necessarily representative of the true impact
that VR environments provide. Many assessments are over short
periods with small exposure times which makes it further difficult to
accurately evaluate the educational potential of VR systems. This is
reflected in the current research outcomes where little consistency
is ascertained, especially in terms of users learning experiences and
therefore the supposed advantages for learning provided by the VR
systems [22].

To exemplify the methodology we describe in our work we have
produced a VR learning environment which is based on a problem-
solving approach. We use this environment to investigate the concept
of insight learning, or Aha! moments, which are sudden moments of
clarity with respect to some problem or concept [70]. Such moments
are considered rare in the education space however if the conditions

for breakthrough thinking are met or facilitated, then insight mo-
ments are more likely to emerge. As stated earlier, breakthrough or
insight oriented approaches are on the rise, so investigating VR as a
potential medium for such approaches to learning is timely. The phe-
nomenon of the insight moment has been studied for nearly a century
through behavioural methods, but has more recently been investi-
gated using reported and physiological measurements [15,38,57].
‘We wish to investigate the emergence of Aha! moments in an ex-
emplar study and our problem-based VR environment is designed
and built to facilitate such a process. Reported measures of users’
Aha! moments have recently been applied in which participants
are asked to report in the very moment they experience such a mo-
ment of insight [15]. Upon pressing a button, they are presented
several questions on a screen to assess the various factors of the
Aha! moment such as suddenness, certainty, and relief. We opt
for a similar approach, however presenting users with questionnaire
items mid-immersion in a VR environment can be detrimental to a
users involvement with the task at hand. We discussed the possibility
to use integrated questionnaires, however this does not solve the
problem of breaking task engagement. Aha! moments, or insight
learning, has yet to be investigated in the context of VR. Due to
many of its characteristics, VR could provide a viable platform for
this approach to learning.

3 EMOTIONAL RESPONSES IN VIRTUAL ENVIRONMENTS
METHODOLOGY

The Emotional Responses in Virtual Environments (ERVE) method-
ology is the process of identifying and collecting data relevant to a
user’s emotional responses within a VR environment, and perform-
ing an analysis such that we can isolate significant emotional events
relative to environmental stimuli (of differing extremities). At the
core of our methodology sits the measure of objective, physiologi-
cally measurable states of users’ emotional responses. We call this
the Sensed Reality dimension, and we augment this measure with
two other data dimensions which we label as Reported Reality and
Observed Reality. As discussed previously, current analyses of VR
systems mainly rely on and utilize two of these dimensions, namely
reported reality and observed reality, but not sensed reality.

The remainder of this section will introduce the conceptual
overview highlighting the importance of the Sensed Reality domain
and how it can be complemented by the other domains when inves-
tigating emotional responses. We follow this conceptual overview
with a high level implementation that can be generalized to different
application areas within VR. We later show how we applied the
methodology in the specific context of learning in VR and more
specifically identifying Aha! moments in VEs.

3.1 Measurement Dimensions

As we have mentioned, in VR evaluations the forms of data col-
lection are most often reported, and observational measures. Users
conduct a task in the VR environment and then after the experi-
ence they complete questionnaires. The quantitative results of the
questionnaires are measured against the observed task results (com-
pletion times or scores for example) and an answer to the question
is formed. We introduce below the conceptual components of our
proposed ERVE methodology.

3.1.1  Sensed Reality Dimension

The sensed reality dimension of data is at the center of our methodol-
ogy and refers to measured states of the body of a subject throughout
an experience. It is entirely objective and it represents the sub-
ject’s internal physiological state —something that is usually not
consciously controlled by a subject. For example, when a subject
is immersed in an experience and is presented with some form of
stimuli, physiological measurements will likely measure the true
impact of the event on the subject, even if the subject does not report



the event as significant later on. This makes physiological measures
a very strong tool for evaluating emotional response and engagement
in VR environments. This is the reason we place high priority on the
implementation of such measures as the core aspect of VR analyses.

3.1.2 Observed Reality Dimension

Observed reality measures the resulting output from the subject in-
teracting with the environmental stimuli. Data can come in multiple
forms and can be appropriate for either qualitative or quantitative
measurement. A common example of this data is filming of an ex-
periment. There would be an experiment room with cameras in each
corner filming the entire room including all actions and reactions
(behaviours) of a subject and the changes in the environment. This is
an example of data that requires qualitative analysis for any formal
evaluation. Other forms of observational data include event records
of anything considered a significant observation throughout an exper-
iment. These can include measures of task performance, or decision
points. VR environments are especially useful for collection of this
form of data because we are able to retain control of the environment
the user is immersed in.

3.1.3 Reported Reality Dimension

The reported reality dimension uses psychological measures which
provide data representing one’s perceptual reality. The most com-
mon means of measuring this dimension are questionnaires and
interviews, each of which ask the user to reflect on their experience.
They provide subjective data, however most of their value lies in the
possibility to quantitatively analyze the data, if some form of nu-
meric scales are used. The issue with questionnaires is that they are
a measure of subject perception at a point in time. It relies on subject
memory of (usually) multiple small experiences over a period of
time. While the period of time is often short, users can have multiple
different emotional responses to an environment and when answer-
ing a questionnaire after the entire experience, we are likely seeing a
subject’s internal average evaluation of the experience with respect
to the system. Slater argues that questionnaires are a sub-optimal
apparatus for measuring the presence construct and they developed
a concept called RAVE (real actions in virtual environments) [60].
The argument is that only by observing the behaviour of subjects
within VR environments can we make any robust deductions about
whether a person is truly present in that environment. The RAVE
approach to measuring presence has been since superseded by a
concept called “respond as-if-real” (RAIR) [32] which explicitly
includes physiological responses to stimuli in VEs. In addition, there
are well known problems with questionnaires and interviews outside
the realm of virtual reality, like experimenter bias, or unintentionally
leading questions.

3.2 General Implementation of ERVE

We present our ERVE methodology in two primary steps (1) system
design and data collection and (2) data analysis. We will describe in
general the process for each of the reality measures described above.
It should be noted that while the sensed reality dimension is central
and necessary for ERVE, one or both of the supporting dimensions
can be applied for successful application of ERVE. We have written
up and provided access to a detailed set of instructions with particular
focus on the analysis. The instructions describe each step of the
analysis process with links to example sets of data and the code
which is produced to perform parts of the analysis. The instructions
can be found at http://www.hci.otago.ac.nz/research_erve.html.

3.2.1 System Design and Data Collection

The implementation of the ERVE methodology requires the VR
system to be designed in a particular way. The system implementa-
tion is most important for the observed dimension of data described
above, but can also encompass the reported dimension depending

on experimenters’ application space. Observed data includes any
data that can be captured from the environment, users’ behaviours
and interactions, and the resulting outcomes of interactions with the
environment. There are two ways a virtual environment and users be-
haviours can be captured. The virtual environment can be designed
in such a way that it can be viewed from one or more perspectives.
A virtual camera can be set up from a third person perspective, much
like how a camera in the real world would be positioned (i.e. in
the corner of a room). If required, such a virtual camera in VR
could be animated to follow the relevant scenario space if necessary
(exemplifying the advantages of VR environments). An alternative
way could be to record the entirety of the VR space as it is acted or
played out so it can later be replayed where an external viewer can
immerse themselves within the replayed environment. If necessary,
and if ethically appropriate, a real camera could be set up in the
real-world space where the user is immersed in the VR space. These
forms of measurement are qualitative and entirely objective and can
yield much relevant information about users’ experiences, however
they are more difficult in terms of analysis.

The occurrence of events are a further form of measurement to
be considered during system design. There are two forms of events
that one might want to measure: 1) externally triggered events, 2)
internally generated events. Externally triggered events are gener-
ated from the environment, usually triggered by an experimenter or
they are pre-programmed, and are designed to induce some response
from system users. Internally generated events are more naturally
occurring, and are generated either as a result of a users interactions
with an environment or by the user themselves as some form of
report. For either of these types of event, the system should be de-
signed to record timestamps of these moments which are considered
to be significant. Furthermore, details specific to the type of event
should also be stored. For instance, if a user is completing a task,
details of that task should be stored such as how long it took, and
how difficult it is. If a user is reporting on a thought or feeling, these
should be distinguishable from one another through the recorded
data.

3.2.2 Physiological Data Collection

With the sensed reality component at the core we begin by describing
physiological data collection. Various measurement tools are avail-
able for collecting physiological data as was described in Sect. 2.1.
One of the most appealing aspects of physiological measurement
is its continuity, so it should be ensured that where this measure
is applied, it can do so without interruption. A requirement for
all dimensions used in the ERVE methodology is measurement of
time, so the measurement device should record the data point in its
corresponding unit, along with the current timestamp.

Again, one of the advantages afforded by VR systems is the
ease of recording events within the environment. We described
above different methods of measurement for observed data that are
implemented within a system. Some reported measures can also
be measured through the system. Examples of reported measures
which are readily suited for application in ERVE are self-reports
which occur and can be recorded in a continuous manner.

3.2.3 Data Analysis

Sensed measures are used as the fundamental measure of physio-
logical responses to VEs which we infer emotional responses from.
We describe first the treatment of the sensed data to prepare it for
further analysis, then we describe the classification of the support-
ing dimensions of data to be measured against the physiological
component.

The type of physiological measure selected for experimentation
will determine how that data is specifically processed, and which
tools are used. Sometimes raw data from physiological measures
contain a lot of noise which makes a formal and robust analysis



very difficult, so noisy data points need to be accounted for. For
the purpose of feature extraction we have to be able to identify data
points (or sets of data points) from a dataset that are indicative of
significant moments (keeping in mind that identified data points have
corresponding timestamps). The values used for feature extraction
are also specific to the type of physiological measure. Examples of
preprocessing for noise reduction and feature extraction for physi-
ological data are available for different datasets such as ECG [27],
EEG [41], and EDA/GSR [69].

The advantage of both observed and reported data when collected
as described earlier is that cleaning is often not required. The only
step that may need to be taken into account is to ensure the times-
tamps are of the same format and timezone as the physiological data.
Unix-based UTC timestamps are a common recording format for
time.

The final step of the analysis is classification of data through
machine learning algorithms. Classification toolkits such as the
Weka Toolkit [19] can be used to classify observed and reported data
sets as described above. For example, when a participant reports
moments they exhibit a specific feeling such as surprise (reported
measure). The duration of the study exposure can be divided into
time segments, e.g. 10 second segments over a 10 minute study.
‘We assign a binary classification system marking each segment as
either a 1 if subjects experienced such a feeling in that 10 second
segment, or a 0 if not. These markers are passed into one or more
classifiers as labels and we can then test the features extracted from
the physiological data against those labels.

This type of analysis method can yield valuable information about
the emotional states of users in VEs while exposed to any form of
stimuli be it extreme and provoking, mild and calming, or anywhere
in between. We can potentially predict individual user’s needs such
as whether they require more or less stimuli, or whether a task is
too difficult or too easy. A strength of this methodology is that it is
not limited to a single context but rather it is relevant to any context
where emotional engagement is key. It should be noted that the set
of instructions we provide (mentioned above) describe an implemen-
tation using EDA and heart rate (HR) measurements, although, the
same process would work by replacing the EDA/HR data prepro-
cessing steps with the appropriate preprocessing requirements of
other physiological data (i.e. EEG or ECG).

We have designed and conducted an exploratory study to demon-
strate examples of measurement in each dimension, and include an
analysis of two of the interactions - Sensed Reality with Observed
Reality, and Sensed Reality with Reported Reality. The results we
provide are intended to be demonstrative of the possible outcomes,
and aren’t intended to answer any hypothesis-driven questions—this
paper is about the ERVE methodology and not about the specific
study. The following sections describe our study context, the study
procedure, and detail the forms of measurement we used in our
ERVE methodology.

4 STUDY CONTEXT, ENVIRONMENT, AND SUBJECT MAT-
TER

To illustrate our ERVE methodology, we use a certain, particularly
chosen learning scenario as our study context. This study serves
as an exemplification of our methodology and hopefully helps re-
searchers to understand, replicate, and apply ERVE to their research
contexts.

Evaluating learning environments is difficult and complex. In
particular maintaining objectivity in a context where each learner
brings with him/her individually very different past experiences.
Those past experiences will undoubtedly influence our evaluation of
the learning experience. Therefore, we try to minimize those effects
by providing a novel-as-possible context for the learner. This is
implemented in two ways: (1) originality of the environment which
users act in, and (2) originality of the subject matter that users are

Figure 1: Overview over our experimental Virtual Reality learning
system. (Left) The original hand drawn proof of concept implemen-
tation from [4] with permission for use granted from the Biological
Computer Laboratory, University of Illinois, (Right) Our imple-
mentation of the original system using current state of the art fully
immersive VR hardware.

attempting to gain mastery over.

For the originality of the subject matter, we utilize an interactive
problem solving task allowing users to experience and manipulate
objects in the fourth spatial dimension (i.e. a space where four
axes lie mathematically perpendicular to each other). The system
was initially proposed for the purpose of evaluating the process that
learners go through when gaining mastery over novel concepts [4,73].
Very few people have knowledge of the theory behind the concept
of four-dimensionality, and even fewer have ever interacted with
it. This presents the opportunity of being able to give a problem
to adults based on novel content, and monitoring their progress
as they go through a learning process in an attempt to achieve an
understanding or a grasp (German: begreifen) of the subject matter.

The original system allows users to experience a 4D construct
called a hypercube (a four-dimensional cube) by rotating it in space.
Figure Fig. 1 (left) depicts Arnold’s hand drawn design plan which
has a user looking into a 3D stereoscopic monitor and utilizing six
analog dials on a board to manipulate the rotation of the hypercube
around its six faces, which is updated on the monitors. This is the
principle of the system —allowing a user to interactively experience
a hypercube through rotations.

For most users, exposure to a virtual environment with a mean-
ingful task is novel. In combination with the 4D hypercube rep-
resentation we provide originality of the environment. One of the
advantages of VR is the flexibility it provides which allows us to
place users in unique locations or situations. If we place users in a
different situation than usual, it can allow them also to think outside
of their usual paradigms. We provide this element by presenting
users with a minimal and unique VR environment containing the
original subject matter. The minimal environment, without the dis-
traction of other external stimuli, provides us with a useful scenario
for evaluating emotional responses. We want to ensure the emo-
tional responses we get are relative to users’ tasks, and therefore, the
minimal environment is way to control for this.

The following section describes in detail our second contribution:
the exploratory study which implements our ERVE methodology
in the context of a VR learning environment. Following that is a
discussion on how the methodology is, or can be, useful.



5 METHODOLOGY BY EXAMPLE: AN EXPLORATORY

STUDY

This study is originally designed to identify the emergence of learn-
ing trajectories that underpin the process inherent in problem-solving.
We are particularly interested in potential moments of insight or Aha!
moments that we discussed in section 2. We use an exploratory de-
sign where a single stream of participants perform problem-solving
tasks within a VR environment. We have implemented a system
which requires a subject to gain mastery over the original concept of
4D space, in particular, mastery over manipulation of a 4D construct
—the hypercube.

5.1 Participants

Participants were recruited from the University of Otago student and
staff populations. In total, 24 participants completed the study (17
male, 7 female) with ages ranging from 18 to 45. There were no
inclusion criteria with respect to domain of expertise. Participants
were compensated for their time with a $50 voucher. The study was
approved by the University of Otago ethics committee.

5.2 Apparatus

‘We implemented a system based on the principle described in Sect. 4.
It involves a learner interactively manipulating rotations of a 4D
cube (hypercube) and attempting to gain mastery over it. Rather than
using the originally proposed visual and interactive mediums (Fig. 1
left), we implement it for use with modern immersive technology.
Our implementation runs a fully immersive VR environment with
an HTC head-mounted display (HMD) for visualization, and two
HTC Vive controllers are used together to manipulate the rotations
of the hypercube (see Fig. 1 right). Fig. 2A demonstrates the user’s
view into the minimal environment where the two controllers are
used to manipulate the rotations of the hypercube in space.

We introduce the task aspect to the system by presenting the user
with two hypercubes, one which they manipulate, and one which is
static and pre-rotated. The task for the participant is to manipulate
their hypercube to match (with some built-in error tolerance) the
rotation of the second static hypercube. Fig. 2B demonstrates this
task.

5.3 Procedure Overview

Participants put on the HMD and are given the two controllers. For
the first three minutes of the experience, participants are exposed
to a single hypercube which they can manipulate to get used to
the environment, the controllers, and movements within the space
(Fig. 2A). After three minutes, the participants were presented with a
second hypercube and their goal was to try to match the hypercubes
in terms of rotations (Fig. 2B). There were 30 puzzle cubes to
match in total, and subjects were able to switch through the list of
hypercubes by using a panel with forward and backward arrows
on it. If subjects completed all 30 of the hypercube puzzles, the
VR segment of the study would end, otherwise they were asked
to remain for the full hour within the puzzle system to complete
as many puzzles as they could. Upon completion of the study,
participants were thanked, and remunerated.

5.4 Measurements

In this section we describe the measurements used in our exploratory
study. We have one form of measure for each of our described
dimensions of data. Emphasis is given to our ERVE methodology,
as this is our main contribution.

5.4.1 Physiological

We employed the E4 wristband sensor produced by Empatica
(www.empatica.com) to measure physiological signals (Fig. 3). The
E4 sensor measures: electrodermal activity (EDA), blood volume
pulse (BVP), heart-rate (HR), peripheral skin temperature, motion

Figure 2: A) the phase where the participant uses the controllers
to manipulate the hypercube alone, and B) the phase where the
user manipulates their hypercube to match the rotation of a static
pre-randomized hypercube.

through accelerometer, and it contains an internal real-time clock.
We were particularly interested in the EDA, HR, temperature, and
accelerometer data. EDA and HR signals are used as our primary
measure of emotional response and represent the sensed reality di-
mension of data in our ERVE methodology. Accelerometer and
temperature data were used to wrangle our measured raw data, in
particular to detect and clean artifacts. More detail will be given
below on how these measures were analyzed and used.

Participant’s are required to wear the E4 bracelet for the duration
of the study. The bracelet was firmly fitted to the wrist/forearm of
the participant. They can be worn on the ankle/leg if needed, but
the wrist was appropriate for our study. Upon conclusion of each
participant’s session, the device is plugged into a PC containing the
E4 software and the data is automatically uploaded.

Figure 3: Empatica E4 wristband device for collecting physiological
data used in our ERVE methodology. The exposed sensors can be
seen in each view of the device.



5.4.2 Observational

Our observational measure was participant successes —when they
solved a hypercube puzzle. When this happened the system recorded
which hypercube was solved (and therefore the hypercube difficulty)
and the time-stamp of the event. In this case, the computer acts
as an automatic observer of the environment. Hypercubes were
categorized into easy, medium, or hard difficulty bins of which
there were approximately equal numbers of each in the list of 30
hypercube puzzles.

Hypercube Difficulty. Rotational complexity refers to the com-
binations of 4D rotational planes (xw, yw, zw, Xy, Xz, yz) that are
rotated, and the extent of the rotation. The rotational complexity in
4D space in terms of rotational planes is not intuitive, i.e. we expect
that rotation in only one plane must be easier than rotations in all
six. In fact, certain rotational planes compliment each other. For
instance, if the xw’ plane only is rotated 75 degrees, it will be a
much harder ghostcube to solve than if the "xw’ and ’xy’ planes are
both rotated 75 degrees. Based on these differences, three categories
of difficulty ratings were assigned to the hypercubes resulting in
nine easy difficulty, 11 medium difficulty, and 10 hard difficulty.
Rotational complexity was also rated by an expert user of the sys-
tem whose ratings were similar to the difficulties established by the
rotational analysis. There were a small number of hypercubes the
expert rated as easy difficulty that were determined as medium by
the rotational analysis, and the same from medium to hard.

5.4.3 Psychological

We are interested in contributing factors to the process of learning in
VR environments. In particular, we wonder what leads learners to
gain insights and experience Aha! moments. We include in our study
the measure of self-perceived Aha! moments, or moments of insight.
Given these moments emerge as a result of one’s cognitive state, this
measure is representative of the psychological (reported) dimension
in our methodology. At the beginning of the study, participants are
provided with a definition of an Aha! moment and are asked that
if, at any point throughout their exposure, they experienced such a
moment they should perform a specific action (i.e. press a button
on their controllers). When this happens, the system records a time-
stamp of the event. This is a naturally occurring continuous measure
due to that it is an event not generated by external stimuli. It is rather
a psychological event generated from within the participant. We
keep the task minimal (as opposed to Danek et al. [15]) such that
participants do not become too distracted from their primary task of
problem solving.

5.5 Analysis

We explore with the following analysis what insights can be gained
from our implementation of ERVE. We describe the required steps
for first processing the data, and then how we analyze it in the
context of the other dimensions of data. We will firstly briefly report
on participants’ performance and reporting of Aha! moments during
the experiment.

5.5.1 Results

Participant solutions from the ghostcube task are expected to be a
strong indicator for learning achievements. Out of 30 hypercubes
presented to participants, they were able to achieve an average /3.54
with a S.D of 7.57. In terms of difficulty, participants were able to
achieve in total: 168 easy hypercubes, 138 medium hypercubes, and
39 difficult hypercubes.

13 out of 24 of the participants reported Aha! moments during
the experiment where the mean number of reported moments is /.79
with a S.D of 3.24. The total number of recorded Aha! moments is
43. There were two observable outliers where one reported a total
of 13 Aha! moments, and the other reported 11.

5.5.2 Electrodermal Activity Signal Preprocessing and Fea-
ture Extraction Tools

The clarity of the Electrodermal Activity (EDA) signal is affected
by the varying intensity of physical activity and alterations in skin
temperature. To mitigate these effects, we applied the EDA-Explorer
tool developed by Taylor et al. [69] to filter the raw signal data. In
their work, they employ two experts to manually label EDA data
collected from 32 participants. Data points are labelled as either
clean or artifacts based on a specified set of criteria. A total of 1301
labelled data points are given to a Support Vector Machine (SVM)
to train a model (Radial basis function (RBF), f=0.1, C=1000,
60/20/20 split). This tool has a classification accuracy of 95.67% for
artifact detection with those labels [69].

After removing artifacts from the signal, the two common com-
ponents of EDA (tonic and phasic) are extracted. The tonic compo-
nent refers to long-term skin conductance levels and slow changes,
whereas the phasic component refers to short-term (event-related)
changes in the signal [5], both of which are used for the analyses. We
employed a convex optimization approach to decompose the EDA
signal into phasic and tonic components by applying the cvxEDA-
tool [26]. We extracted features from both components. Peak related
features (peak, strong peak) are calculated from the phasic compo-
nent whereas long-term signal features (mean, std and percentile
features) are extracted from the tonic component. Seven features that
are extracted from the EDA signal can be listed as: mean, standard
deviation, peak, strong peak, 20th percentile, 80th percentile and
quartile deviation (75th percentile, 25 percentile). These features
are noted in the literature as the most discriminative for the EDA
signal [1].

5.5.3 Heart Activity Signal Preprocessing and Feature Ex-
traction Tools

The heart activity is also exposed to signal contamination due to
the movement of subjects. To address this, a preprocessing tool
has been developed in MATLAB which employs the 20 percent
rule on data and a local average. In this rule, every data point is
compared with the local average and detected as an artifact if the
difference is higher than 20%. We delete the data points that do not
satisfy this rule. The 20% rule for artifact detection is commonly
used in the literature [13]. We have implemented parameters that
can be used to either remove the artifact points, or adjust artifact
points by applying shape preserving cubic spline interpolation. If
the artifacts are removed and not interpolated, the cleaning tool can
impose new constraints on the remaining clean data. It requires N
consecutive data points, or it can set a minimum consecutive time
rule similarly (non-interrupted with deleted artifacts) to evaluate the
segment worth processing. The percentage parameter of the artifact
detection rule and window length of local mean calculation for data
point comparison can also be adjusted from the preprocessing tool.

MATLAB’s built-in functions along with Marcus Vollmer’s HRV
(heart rate variability) toolbox! [71,72] was applied to extract heart
activity features. The following time domain features were extracted:
HR mean, standard deviation of the inter-beat interval, mean value
of the inter-beat intervals, root mean square of successive difference
of the inter-beat intervals, the percentage of the number of succes-
sive inter-beat intervals varying more than 50ms from the previous
interval, the total number of inter-beat intervals divided by the height
of the histogram of all inter-beat intervals measured on a scale with
bins of 1/128s (HRV triangular index), and triangular interpolation
of inter-beat interval histogram. We applied a Fast Fourier Trans-
form (FFT) approach to isolate the separate frequencies within the
data. We were able to determine low frequency power (LF), high
frequency power (HF), very low frequency power, prevalent low fre-
quency, prevalent high frequency, and the ratio of LF to HF (LF/HF).

'marcusvollmer.github.io/HRV/
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Figure 4: Bar plot showing all five classifiers, indicating that Cog-
nitive Load classification using HR features (HRV-CL) and Aha
moment (insight) classification using EDA features (EDA-AHA)
yield the highest prediction accuracy. Cognitive Load classified
using EDA features (EDA-CL) yields low prediction rates.

Lomb-Scargle periodogram was applied to analyze the periodicity
of the LF, HF and LF/HF time series data. The features that were
extracted are the most widely used, and the most discriminative
according to the literature [1].

With the EDA and Heart Activity data preprocessed, we conduct
the classification with respect to observed data (ghostcube solutions)
and reported data (Aha! moments).

5.5.4 Classification of Cognitive Load

Electrodermal Activity and Solution Events.  We first analyze
the relationship between EDA data, and solution events. We estimate
cognitive load trends based on the solution difficulties established
earlier. During easier solutions, participants would be experiencing
less cognitive difficulty, and harder solutions require more cognitive
effort. The difficulty levels of the ghostcubes (easy, medium, and
hard) solved by participants in our experiment were used as labels
for machine learning algorithms (1, 2, and 3 respectively). In order
to classify three cognitive load levels, we have used the Weka toolkit
[19]. These classes were imbalanced due to the nature of the data
where “hard” labels represent the minority class. We employed a
re-sample method from Weka toolkit to balance the data (i.e added
samples of the minority class) to prevent classifiers from biasing
towards the majority class. To ensure we are providing an exhaustive
analysis, we test our EDA features (extracted earlier) using multiple
classifiers. We have applied five different classifiers on our cognitive
load data:

A. PCA and SVM with linear basis function
. MultiLayer Perceptron (7-5-3) (MLP)
. K-nearest neighbours (k=1)

. J48 Decision Tree

m 9 0 W

. Random Forest (RF, 100 trees)

These classifiers are selected due to their common application for
physiological signal processing in the literature. All classifiers in the

Weka toolkit were run with the algorithms’ default values. For each
classifier, results are validated with 10-fold cross validation. Results
have been provided for 3-class classification of low, medium and
high cognitive load levels. We tried the selected machine learning
algorithms on our EDA data (see Fig. 4 (EDA-CL)). The resulting
average classification accuracy across the five different classifiers
was 48.36% when discriminating using three difficulty levels of
cognitive load. The most successful classifier for EDA data was
the Random Forest approach which achieved 50.83% accuracy with
7.62% variance.

We applied the same process to the heart activity data collected
from the Empatica E4 device using the same cognitive labels. We
were able to discriminate the three cognitive load levels with a
resulting average classification accuracy of 82.79%. For the heart
activity data, the most successful classifier is the Random Forest
approach which achieved 91.75% with variance 4.87% (see Fig. 4
(HRV-CL)).

5.5.5 Classification of Aha! Moments

Aha! experiences (moments of insight) are times the participants felt
that they made a conceptual breakthrough in determining a solution.
These events occur rarely. In the duration of our experiment, less
than two of these moments occur in sixty minutes on average. This
means that the detection of the events is not trivial. EDA is excellent
for determining the arousal level, since it can assess changes in
the SNS (sympathetic nervous system) [79]. Since these moments
represent a form of arousal, we have used the EDA signals which can
detect instant arousal of individuals. We have employed the same
EDA tools as specified above in Sect. 5.5.2 for feature extraction of
the EDA data.

We were able to classify against multiple classes for the cognitive
load classification due to our difficulty categorization. Aha! mo-
ments can not be categorized in such a way, so a binary classification
is required. We divided each 60 minute session into 60 segments,
each one minute long. A one or a zero was assigned to a segment
depending on whether a participant reported an Aha! moment within
that minute or not. These values are then given to the classifier.

By applying the Weka toolkit with the same machine learning
algorithms, we achieved an average accuracy of 83.65%. The most
successful classifier was again the Random Forest approach achiev-
ing an accuracy of 98.81% with a variance of 0.9 (see Fig. 4 (EDA-
AHA)).

5.6 Interpretation

The average classification accuracy for the cognitive load with the
EDA was 48.36% with the lowest classifier yielding an accuracy
of 45.8%, and the highest classifier yielding 50.83%. The primary
reason the EDA classification has returned low accuracy is due to
the short consecutive segments of cognitive load data. Puzzle com-
pletion times were often quite close together (in the order of 10
seconds). The more delayed nature of the EDA makes it more diffi-
cult to isolate significant emotional responses against such frequent
cognitive events. For instance, a user’s EDA will rise as they spend
3 minutes on a level-3 puzzle and then upon completion they are
presented with a level-1 puzzle which they complete in 10 seconds.
The EDA takes longer to stabilize making a correct decision difficult
for the classifier.

The HR data does not have the issue of delay as it is one of the
first responses to the sympathetic nervous system. This explains the
consistently higher classification accuracy of cognitive load against
the HR data of 82.78%. By looking at the HR data alone, we are
able to predict the difficulty of environmental subject matter at the
approximate rate of the achieved accuracy. For example, we could
tell when a subject is struggling with a particular problem, or when
they are finding particular problems easy.



The Aha! moment classification was higher again with an average
accuracy of 83.66%, meaning that we have identified emotional
responses in the EDA data which indicate the subject has had, is
having, or is about to have an Aha! moment. Classifier performances
are aligned with recent investigations of classification algorithms for
wearable sensor data [11].

6 DiscussION

Using our proposed ERVE methodology, we conducted an ex-
ploratory study which doubles as a description of how to apply
our methodology. Included is an analysis of two interactions be-
tween the three independent data dimensions. We were able to
isolate with high accuracy physiological determinants of cognitive
load, and subjective moments of insight with users in a VR learning
context. With more refinement and testing, analyses using ERVE
can yield informative results which can be used in the delivery of
virtual content across a more broad spectrum of applications. We
could reliably identify the difficulty users were experiencing while
trying to learn a new concept in a minimal environment with no
introduction of emotionally provocative environmental content other
than the subject matter. More can be gained from the ERVE method
such as investigating other possible interactions in a wide range of
VR application scenarios.

6.1 VR Application Spaces

Our ERVE methodology and analysis technique is not only useful in
the narrowly defined context of learning in VR. Actually, it can and
perhaps should be applied in all VR evaluations where emotional
responses matter. VR environments are the primary target for our
methodology due to the controlled and flexible nature of VR appli-
cations. We are able to control, record, and measure variables within
that space which is what makes the VR context immediately suitable
for the methodology. Application of our methodology outside the
VR space is a focus for future work. The following scenarios are
examples for such applications of ERVE.

Training and instruction often fall under the umbrella of education,
and it is certainly the case that something is being learned, though
it is most often hard skills that are learned through drill and repeat
practices. In some cases training can mean providing a trainee
with situational experiences. VR has the ability to produce such
experiences for trainees that are difficult and/or expensive to simulate
in the real world. An example of such an experience is an emergency
room situation where a person in critical condition is rushed into the
hospital. These experiences will be most valuable if the trainees are
engaged with the environment and genuine emotional responses are
generated.

The gaming and entertainment industry benefits from having
highly engaged users. This includes (arguably more so) serious
games. Game developers generally aim to create experiences that
players will not forget. Many game development concepts feed
into maximizing that experience, although in the context of VR,
game development processes are still being established. The set of
conventions that underlie game development as we know it do not all
necessarily apply to VR game development, so as the industry works
towards a new framework for immersive development, our ERVE
methodology will be a useful tool in validating that the experiences
being generated are producing the emotional engagement developers
want for their players.

Health treatments and well-being applications are common areas
of interest in the VR research community and, as with training and
entertainment systems, these applications can benefit from ERVE
throughout their development. Presence studies have been conducted
in the context of phobia treatment and have established the impor-
tance that a user achieves a sense of presence for the treatment to
be effective [54]. Presence has been shown in many cases to be a

pivotal factor for the success of VR applications. Generally speak-
ing, VR can be described as a system which is computer-generated,
three-dimensional, and is interactive in real-time such that users
experience a sense of presence. Given that presence is one of the
defining characteristics of successful VR applications, we need to
work to maximize that construct. Involvement was found to be a sig-
nificant factor for the sense of presence in virtual environments [58],
and it is a factor which requires emotional engagement. Therefore
our ERVE methodology becomes relevant in any given VR context
that wishes to maximize a user’s level of engagement or involve-
ment with the virtual environment. We can not only measure a
user’s emotional responses during exposure for later analyses, but
we can potentially use that data in real-time to tailor the environ-
ment for each user to maximize their engagement levels, resulting
in an increased sense of presence and therefore a maximized VR
experience.

6.2 Limitations and Future Work

We have been successful in implementing our ERVE method in
our context of learning. There are however a number of outstand-
ing questions and observations which demonstrate the potential of
ERVE.

The EDA data has both tonic and phasic components where the
tonic is the long-term component. It would be interesting and poten-
tially beneficial to analyze the tonic forms of the EDA data before
and after significant observational events. To take the data sets we
used in this work - the subject successes and Aha! moments, what
would the tonic forms of the EDA say about the process leading
to those moments? Are there any emerging patterns? Furthermore,
it could be possible to classify a combination of HR and EDA sig-
nals to improve the classification accuracy. These are interesting
directions for future work.

As our methodology is applied in more contexts, we also have
to consider what different kinds of reported, observed, and sensed
data might be measured. We have described one analysis technique
that will work for a broad range of datasets, however other data will
be more difficult to analyze against physiological measures such as
interview and questionnaire results. Perhaps new methods of collect-
ing reported measures can be devised for the purposes of application
in the ERVE methodology. Furthermore, reported data collected
through post-experience questionnaires can be difficult to use in the
context of ERVE. Interview and questionnaire data can be a useful
indicator of what kind of sensed data is being collected due to the
potential confounding factors that could impact physiological mea-
sures. For instance, our measures of emotional response originate in
the sympathetic nervous system which is responsible for the fight or
flight instinct. Therefore, more subjective data can help to further
contextualize sensed data. This is an interesting space for future
work.

There are a number of potential issues that arise upon reflection
of this methodology. Physiological data, particularly EDA and HR
data, are susceptible to noise from physical movement. One of the
benefits afforded by VR environments is their interactive capabilities
requiring movement of the user, often using their arms and hands.
Should a wristband be used for data collection, this could result
in noisy data. We have employed techniques to mitigate for this
in the preprocessing step of the analysis, however this should be
investigated and perhaps compared to participants in more static
scenarios.

Given the emphasis of emotional response in our analyses, we
should consider the novelty of VR use. Users’ first experiences in
VR often produce novelty effects which could have an impact on
physiological measures of their sub-conscious emotional states. It
was for this reason that we generated a minimalist VR environment,
and also provided participants with a long exposure time of one hour.
If novelty effects are occurring, they should likely be reduced after



the participant has settled into the environment and are focusing on
the task. There is potential here though for more investigation to
confirm these speculations.

With respect to our study context, we should be careful that
certain tasks which are presented to participants will not become
detrimental to their performance in other tasks or result in a bias on
any other measurements. In our case, it was tasking users to report
any Aha! moments they might experience during the exposure. It
is possible that asking participants to keep this in mind could result
in their divided attention. Despite this potential issue, we observed
participants more often realizing they are having such a moment and
remembering then to report it rather than always being distracted by
it. Future work could consider alternative or additional observational
or sensed measures of insight occurrences to mitigate these potential
issues.

More generally, the study of insight or Aha! moments is difficult
due to their often rare occurrence. This has made it difficult to
investigate however as was reported earlier, breakthrough thinking
approaches to learning are gaining increasing attention and if we can
facilitate the required conditions, we can improve users’ chances of
achieving moments of insight more frequently. We have been able to
provide users with a problem space and an environment to achieve
these moments and our methodology provided us with a structured
approach to measuring this phenomenon. Further investigation is
encouraged in this space to solidify findings, to improve our under-
standing of how we can better implement VR learning environments,
and to fine-tune analysis techniques.

Two potential benefits become apparent when thinking about the
outcomes of our analysis. The first is the impact it will have on
current education-based VR system evaluations that rely on pre- and
post-exposure reported, and observed measures only. With more
implementations of this kind and more data over time, we will be
able to increase the reliability of these analyses. This means educa-
tors could analyze data obtained from learners exposures to subject
matter and determine, for instance, which content in particular they
are finding difficult in the VR environment. As in the real world, dif-
ferent learners take different approaches to problems. This analysis
could be extended to help clarify the emotional processes behind dif-
ferent approaches and how they might have an effect on the learning
outcomes. How we can use the insights of those analyses to further
facilitate education in virtual environments is up for discussion and
will likely become more clear as the data emerges.

Our approach also presents the opportunity for a real-time user
feedback implementation of this measure. A common issue people
encounter when attempting to solve problems (or resolve habits) is
they exhibit mal-adaptive behaviours which hinder them from ac-
complishing their goals. By applying this methodology in a real-time
feedback loop, it would be possible to have a VR environment alter
the way is it delivering subject matter according to the emotional
responses and mal-adaptive behaviours exhibited by the subjects.
This would hopefully drive them toward improving their behaviours,
therefore impacting the way they approach problems. A further
real-time approach of interest would be to present users with a rep-
resentation of their own physiological data (which is representative
of their sub-conscious emotional state) while immersing them in
various situations and scenarios. This approach could have potential
application in VR mental health treatments.

The wider space of mixed and augmented reality applications
can also benefit from these forms of analyses. As in the case of
VR, MR is applied across multiple different domain spaces where
user’s engagement is a desirable outcome. AR has been considered
in the space of education, a space we have shown in this work can
benefit from our methodology. Other spaces such as commercial and
industrial, medical, entertainment, and collaborative domains have
received focus from augmented and mixed reality developers, for all
of which psychological involvement of their users is desirable.

7 CONCLUSION

We have designed and implemented a new methodology based on
measuring physiological responses from which we infer emotional
states in virtual environments. We implemented the methodology
in a VR learning context to demonstrate its implementation and
possible outcomes. By sensing users’ physiological responses and
conducting our analyses we have been able to predict with high
accuracy the degree to which VE and task stimuli has impacted the
emotional states of subjects. We can determine through heart activity
the cognitive load a user is under in VR, and using electrodermal
activity we can predict when users are approaching, experiencing,
or have had an Aha! moment. These results are indicative of the
potential of the ERVE methodology described in this work. We
concluded with a discussion on the impact of the methodology on
modern VR systems development and potential applications of these
measures in other VR contexts. ERVE is relevant in any VR context,
especially for researchers and developers intending to maximize the
engagement and response levels of their users.
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