Empathic Collaboration in Extended Reality

ARINDAM DEY

EMPATHIC EXTENDED REALITY AND PERVASIVE COMPUTING LAB

UNIVERSITY OF QUEENSLAND

A.DEY@UQ.EDU.AU

"Seeing with the Eyes of another, Listening with the Ears of another, and Feeling with the Heart of another ..."

Alfred Adler

Experiencing the reality of another

Empathic Computing

Understanding

Systems that can understand your feeling and emotions

Extended
Reality

Sensors

Experiencing

Systems that can help you better experience the world

Sharing

Systems that help you better share your experiences with others

"Virtual Reality is the ultimate empathy machine ..."

- Chris Milk

Extended Reality Systems that can Measure | Share | Adapt to | Manipulate *Emotion* and *Cognition* in real time

-Physiological (ECG, EDA, EMG, Pupil) -Neurological (EEG) -Behavioural (Speech, Posture, Movement)

Background

Felnhofer et al. 2015

VEs can cause emotional change

Bernal and Maes; ACM CHI 2017

Emotional expression in VE cause enjoyment

Sharing Physiological States in Collaborative VR

ACM CHI'17

Sharing Physiological States in Collaborative VR

Affect

Data Collected

- Raw heart-rate
- Relative head orientation

Results

- Higher positive affect
- Observer interaction needed

Positive and negative affect schedule (PANAS)

More communication between collaborators

ACM CHI'17

Multi-Sensory Heart Rate Feedback in Collaborative VR

(a) Escape Room

(b) Exploration

(c) Furniture Arrangement

IEEE ISMAR'18

Multi-Sensory Heart Rate Feedback in Collaborative VR

IEEE ISMAR'18

Manipulating Heart Rate Feedback in VR

ACM CHI Play'18

Shared and Manipulated Heartrate Feedback in VR

Manipulation

-20%, 0%, +20%

IEEE ISMAR'19

Dependent Variables

For self and collaborator

Positive and negative affect schedule (PANAS) Self-assessment manikin

- Social presence
- Inclusion of the other in self scale
- Other questionnaire
- Real heart rate

Only for self

Procedure & Setup

- 24 Participants (12 groups)
- 2 hours per pair
- \$20 gift vouchers

- Audio-haptic feedback

• Received each other's heart rate feedback Participants were unaware of manipulation

• 6 virtual environments (counterbalanced)

PANAS

Passive VE: +20% caused more scariness and nervousness than -20% in *self*

Collaborative Environment

Active VE: *Partner* perceived to be more excited

Social Presence

Active environment causes higher social presence

(d)

(e)

Collaborative Environment

SAM - Self

Passive VE: rated higher for valance and arousal Active VE: rated higher for dominance

Heart Rate Manipulation

SAM - Partner

Passive VE: rated higher for valance and arousal Partner perceived to have higher valance

Active VE: rated higher for dominance

Heart Rate Manipulation

Inclusion of the other in self scale

Heart Rate Manipulation

Active VE caused higher connection

Heart rate

Heart Rate Manipulation

Active VE caused higher heart rate

+20% manipulation had lowest heartrate (trend)

Collaborative environments affect

- social presence
- emotional awareness
- raw heart rate
- subjective connection

Heart rate manipulation affects

- self emotional awareness in passive VE
- raw heart rate

Social presences increases with - Shared awareness cues - Higher interaction

- Shared physiological feedback can
 - Increase communication
- Alter emotions but not real signals
- Increase awareness but may not change action

Next steps: Using EEG and other physiological sensors

- Emotionally and cognitively adapt interfaces for collaborative learning, training, and social interactions
- Understand how brain synchronization works in collaborative XR
- Effectively share emotional and cognitive states to create empathy in collaborative XR

Thank You!

Enrique Klein Garcia-Godos

Ashleigh Kelly

Empathic Extended Reality and Pervasive Computing Lab

Jane Phoon

Lewis Bobbermen

Adam Rankin

Arindam Dey

- Co-Innovation Group | University of Queensland
 - http://empathicxr.org | a.dey@uq.edu.au