

ARIVE Lecture Series

Augmented Experiences: Physiological Sensors/Input and XR

Arindam Dey & Chelsea Dobbins University of Queensland

2

- August 2020

- 1. Empathic Extended Reality
- 2. Emotion Detection from Physiological Signals

Empathic XR

Use of Neurophysiological Signals in Extended Reality

5

University of South Australia Extended Reality Systems that can Measure | Share | Adapt to | Manipulate Emotion and Cognition in real time

- Physiological (ECG, EDA, EMG, Pupil)
- Neurological (EEG)
- Behavioural (Speech, Posture, Movement)

August 2020

ARIVE Measuring Presence with Neurophysiological Signals

(a) HP: hand

(b) HP: pond

(c) HP: high-level view

(f) LP: high-level view

	(u) LI. Hallu		
6		August 2020	

(e) LP: pond

ARIVE Lecture Series XR

Arindam & Chelsea

ARIVE Measuring Presence with Neurophysiological Signals

University of South Australia

Data Collected

- EEG (14-Channel Emotive)
- EDA (skin conductance)
- ECG (heart rate)
- Presence Questionnaires

ARIVE Measuring Presence with Neurophysiological Signals

8

University of South Australia

Chirplet Trasformed Spectrogram Representation of Low Presence Task in AF3 Freq (Hz) 2 15 40 60 120 160 180 20 80 100 140 Chirplet Trasformed Spectrogram Representation of High Presence Task in AF3 Freq (Hz) 2 100 20 40 60 80 120 140 160 180 Time (Sec)

Results (higher presence causes)

- higher heart rate
- less visual stress
- higher theta and beta activities in the frontal region
- higher alpha activities in the parietal region

August 2020

ARIVE Sharing Physiological States in Collaborative VR

ARIVE | Sharing Physiological States in Collaborative VR

12

University of South Australia

ARIVE

NO FEEDBACK

University of South Australi

ARIVE Multi-Sensory Heart Rate Feedback

University of South Australia

Results

- Audio-Haptic ranked best
- More interaction needed for higher presence

ARIVE Lecture Series XR

ARIVE Manipulating Heart Rate Feedback

15

ARIVE Interacting with Facial Expressions in VR

How can people with limited mobility use VR?

University of South Australia

ARIVE Lecture Series XR

16

ARIVE Interacting with Facial Expressions in VR

University of South Australia

ARIVE Lecture Series XR

17

ARIVE Interacting with Facial Expressions in VR

August 2020

18

Emotion Detection from Physiological Signals

Mobile sensors are pervasive and unobtrusive...

THE UNIVERSITY OF AUGUST AND A CONTRACT AND A CONTRACT OF AUGUST AND A CONTRACT A

Smart Ring Smart Glasses 8 6-Smart Finger Smart Shirt With heart & respiration sensors incide -11 Smart Bracelet 0 Smart Watch SGPS/GPRS Baby Control K Bluetooth Key Tracker Smart Belt 8 Smart Pants Smart Shoes Smart п 1 m Socks

Data from the human body can be logged in everyday life using mobile/wearable devices

24 hours a day

7 days a week

But what do we gain by way of understanding from this mass amount of data?

ARIVE Lecture Series XR

Negative emotions are part of everyday life... But they are also associated with long-term health problems, such as Coronary Heart Disease

24

... so can we use mobile sensors to gain insight into the effects of negative emotion on our cardiovascular health in everyday life?

26

University of South Australia

Take anger/stress for instance...

we all know what it feels like to be angry or stressed

August 2020

But anger/stress also has a physiological impact...

increased heart rate

increased blood pressure

increased cardiac output

28

University of South Australia

Physiological signals, including electrocardiogram (ECG), can be measured using wearable sensors...

http://www.shimmersensing.com/products/ecg-development-kit

August 2020

30

A raw ECG signal needs to undergo extensive pre-processing before feature extraction

Chelsea Dobbins and Stephen Fairclough, "Signal Processing of Multimodal Mobile Lifelogging Data towards Detecting Stress in Real-World Driving," *IEEE Transactions on Mobile Computing*, vol. 18, no. 3, pp. 632–644, May 2018. DOI: 10.1109/TMC.2018.2840153

August 2020

	Frequency domain features include:		
THE UNIVERSITY OF AUCKLAND WHEN WRITE A DAWN HARRY NEW ZEALAND	Total Power (TP)	 Total power of all intervals between 0 and 0.4 Hz 	
UNSW			
	High Frequency (HF)	 Power in the spectrum between 0.15 – 0.4 Hz 	
	Low Frequency (LF)	• Power in the spectrum between 0.04 - 0.15 Hz	
THE UNIVERSITY OF QUEENSLAND AUSTRALIA	Very Low Frequency (VLF)	• Power in the spectrum between 0.0033 and 0.04 Hz	
VICTORIA WELLINGTON			
	LF/HF	 Ratio between low and high frequency power 	
32	August 2020	ARIVE Lecture Series XR Arindam & Ch	nelsea

Feature selection can reduce your dataset further

Chelsea Dobbins and Stephen Fairclough, "Signal Processing of Multimodal Mobile Lifelogging Data towards Detecting Stress in Real-World Driving," *IEEE Transactions on Mobile Computing*, vol. 18, no. 3, pp. 632–644, May 2018. DOI: 10.1109/TMC.2018.2840153

I. Kononenko, E. Šimec, and M. Robnik-Šikonja, "Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF," Applied Intelligence, vol. 7, no. 1, pp. 39–55, 1997. DOI: 10.1023/A:1008280620621

33

Engagement with health means understanding everyday links between cause and effect

Lifelogging systems can deliver this understanding

But only if the data is provided to the person in an *intuitive* and *digestible* form

ARIVE Contact (for this lecture)

University of South Australia

Dr Arindam Dey a.dey@uq.edu.au

Dr Chelsea Dobbins c.m.dobbins@uq.edu.au

Empathic Extended Reality & Pervasive Computing Lab The University of Queensland

August 2020