

ARIVE Lecture Series XR: Virtual and Augmented Reality

Engaging Human Augmentation

Stephan Lukosch HIT Lab NZ stephan.lukosch@canterbury.ac.nz

INTRODUCTION

Artificial Intelligence (AI)

- Computer systems that perform tasks normally requiring human intelligence
- Al systems are world champion in games such as Chess, Jeopardy or Go
- Al systems play a major role in financial trading, computer assisted diagnosis, recommendations or self-driving cars
- But, Al lacks qualities like
 - experience
 - creativity
 - Ieadership
- Humans still leading in innovation or design

https://www.nature.com/nature/volumes/529/issues/7587

https://www.youtube.com/watch?v=AVxTm7RsVkM

AI and humans

- Combine artificial and human intelligence
- Use AI for sensor-based machine perception
- Create human-centred intelligent systems and intelligent user interfaces
 - Affective systems
 - Empathic systems
- Amplify existing or create new human skills and capabilities

Iron Man 3

Title page, The Six Million dollar Man, ABC

Augmented Intelligence

- Use AI to augment human intelligence
- Increase the effectiveness of processes resulting in human time and productive thought
- Increase the capability of a human to approach a complex problem situation
 - Gain comprehension
 - Derive solutions
- Use of AI in real-life situations

Augmented Humans

- Do not limit human augmentation to intellectual abilities
- Shift from human-computer-interaction to human-computer-integration
- Augment human abilities by human-computerintegration
 - Enhance and create new experiences
 - Foster engagement

Rekimoto, J., From augmented reality to augmented human, IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2013, 2013, 1

Model for user engagement

O'Brien, H. L. & Toms, E. G., "What is user engagement? A conceptual framework for defining user engagement with technology", Journal of the American Society for Information Science and Technology, Wiley Online Library, 2008, 59, 938-955

HEALTH

Augmented Reality Games to Assess Upper Extremity Motor Dysfunctions

- Question: How to design AR games for an engaging, patient-friendly, objective, quantitative, valid and efficient tool to assess upper extremity motor dysfunctions?
- Approach: Iterative patient-centered design of AR games
 - Post Office Trouble
 - Candy Factory
 - ChiroChroma
 - Balloons, Melody Cubes, Hungry Squirrel

Cidota, M. A.; Lukosch, S. G.; Dezentje, P.; Bank, P. J.; Lukosch, H. K. & Clifford, R. M., Serious Gaming in Augmented Reality using HMDs for Assessment of Upper Extremity Motor Dysfunctions, i-com – Journal of Interactive Media, Special Issue on Smartglass Technologies, Applications and Experiences, 2016, 15, 155-169 Cidota, M. A.; Bank, P. J.; Ouwehand, P. E. W. Ouwehand & Lukosch, S. G., Assessing Upper Extremity Motor Dysfunction Using an Augmented Reality Game, IEEE International Symposium on Mixed and Augmented Reality, IEEE Computer Society, 2017, 144-154

Game impressions

System Usability Scale (SUS)

Brooke, J., Jordan, P. W.; Thomas, B.; Weerdmeester, B. A. & McClelland, A. L. (Eds.), SUS: A "quick and dirty" usability scale, Usability Evaluation in Industry, Taylor and Francis, 1996

Game Experience Questionnaire

- Modular structure consisting of:
 - core questionnaire
 - social presence module
 - post-game module
- Assesses game experience as scores (0 4) on seven components:
 - competence
 - immersion
 - flow
 - tension
 - challenge
 - positive and negative affect

1	I felt revived
2	I felt bad
3	I found it hard to get back to reality
4	I felt guilty
5	It felt like a victory
6	I found it a waste of time
7	I felt energised
8	I felt satisfied
9	I felt disoriented
10	I felt exhausted
11	I felt that I could have done more useful things
12	I felt powerful
13	I felt weary
14	I felt regret
15	I felt ashamed
16	I felt proud

17 I had a sense that I had returned from a journey

IJsselsteijn, W. A.; de Kort, Y. A. W. & Poels, K., The Game Experience Questionnaire, *Technische Universiteit Eindhoven, Technische Universiteit Eindhoven,* **2013** Law, E. L.-C.; Brühlmann, F. & Mekler, E. D., Systematic Review and Validation of the Game Experience Questionnaire (GEQ) - Implications for Citation and Reporting Practice, *Proceedings of the* 2018 Annual Symposium on Computer-Human Interaction in Play, ACM, **2018**, 257-270

Results

- AR games have potential for assessing motor impairments in patients with neurological conditions
- Design recommendations
 - Use a first-person perspective to keep relation to the real world
 - Make games adaptable to the patient's physical and mental condition
 - Make game features are relevant and meaningful for assessment
 - Game controls need not to interfere with the natural movements
 - Provide large interaction space with guidance towards virtual objects
- Future work
 - Improve accuracy of measurements
 - Explore continuous fine-grained adaptation of game interaction
 - Explore application in clinical practice

SAFETY & SECURITY

Human Augmentation for Distributed Situational Awareness

- Question: How to design human augmentation to improve distributed situational awareness between local and remote investigators, policemen, and firemen?
- Approach: Create virtual co-location of local and remote experts
 - Use AR to augment crime scene with relevant information
 - Allow local and remote expert to annotate scene
 - Share annotation between organisations

Lukosch, S.; Lukosch, H.; Datcu, D. & Cidota, M., Providing Information on the Spot: Using Augmented Reality for Situational Awareness in the Security Domain, Computer Supported Cooperative Work (CSCW), 2015, 24, 613-664

Techniques to assess situational awareness

- Self-rating techniques
 - subjective assessments of SA
 - administered post-trial
 - easy non-intrusive application

Freeze probe techniques

- SA related queries during 'freezes'
- task is randomly frozen
- responses are compared to the state of the system at the point of the freeze
- may negatively affect performance

Real-time probe techniques

- experts as SA related queries on-line
- no freeze of the task under analysis
- query response time indicator for SA
- **Observer rating** techniques
 - experts observe participants during task and rate SA
 - non-intrusive

Salmon, P. M.; Stanton, N. A.; Walker, G. H.; Jenkins, D.; Ladva, D.; Rafferty, L. & Young, M., Measuring Situation Awareness in complex systems: Comparison of measures study, International Journal of Industrial Ergonomics, 2009, 39, 490 - 500

Situation Awareness Rating Technique (SART)

- Self-rating technique
 - I0 dimensions
 - 7-point Likert scale: I = low, 7 = high
- Applicable, if
 - SA content is not predefined
 - task is dynamic, collaborative, and changeable
 - task outcome is not known (e.g. real world tasks)
- Administered post-trial
- SART score is: U−(D−S)
 - U is the summed understanding
 - D is the summed attentional demand
 - S is the summed attentional supply

SART questionnaire

SART questionnaire – Understanding

- Information Quantity: How much information have you gained about the situation? Have you received and understood a great deal of knowledge (High) or very little (Low)?
- Information Quality: How good is the information provided about the situation? Is the communicated knowledge valuable (High) or not (Low)?
- Familiarity with Situation: How familiar are you with the situation? Do you have a great deal of relevant experience (High) or is it a new situation (Low)?
- SART questionnaire Attentional demand
 - Instability of Situation: How changeable is the situation? Is the situation highly unstable and likely to change suddenly (High) or is it very stable and straightforward (Low)?
 - Variability of Situation: How many variables are changing within the situation? Are there a large number of factors varying (High) or are there very few variables changing (Low)?
 - Complexity of Situation: How complicated is the situation? Is it complex with many interrelated components (High) or is it simple and straightforward (Low)?
- SART questionnaire Attentional supply
 - Arousal: How aroused are you in the situation? Are you alert and ready for activity (High) or do you have a low degree of alertness (Low)?
 - Spare Mental Capacity: How much mental capacity do you have to spare in the situation? Do you have sufficient to attend to many variables (High) or nothing to spare at all (Low)?
 - Concentration of Attention: How much are you concentrating on the situation? Are you concentrating on many aspects of the situation (High) or focussed on only one (Low)?
 - Division of Attention: How much is your attention divided in the situation? Are you concentrating on many aspects of the situation (High) or focussed on only one (Low)?

NASA Task Load Index (TLX)

- Subjective workload assessment tool
- Focus on users working with human-machine systems
- Multi-dimensional rating procedure
- Overall workload score based on a weighted average of ratings on
 - Mental Demands
 - Physical Demands
 - Temporal Demands
 - Own Performance
 - Effort and Frustration
- Weights for subscales user defined

Mental Demand	How mentally demanding was the task?		
Very Low	V		
Physical Demand	How physically demanding was the task?		
Very Low	Very High		
Temporal Demand How hurried or rushed was the pace of the task?			
Very Low	Very High		
Performance	How successful were you in accomplishing what you were asked to do?		
Perfect	Failure		
Effort How hard did you have to work to accomplish your level of performance?			
Very Low	Very High		
Frustration How insecure, discouraged, irritated, stressed, and annoyed wereyou?			
Very Low	Very High		

Hart, S. G. & Staveland, L. E., Hancock, P. A. & Meshkati, N. (Eds.), Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research , Human Mental Workload, Amsterdam: North Holland Press, 1988

Results

- Team situational awareness increased with AR
- Design recommendations
 - Use AR to create a shared visual space between local and remote
 - Use AR to enrich crime scene with information
 - Use remote colleagues as advisor in stressful situations
 - Use virtual co-location to increase presence of remote experts at local scene
- Future work
 - Explore other scenarios and modalities
 - Adapt information to current user context, e.g., environment, emotional state, task, ...

SUPERHUMAN SPORTS

Superhuman Sports Society

Superhuman Sports

- Question: How to design mixed reality games that motivate and engage users in physical activity?
- Approach: Augment human capabilities in sports and games
 - Augment senses
 - Augment the body
 - Augment the playing field

Augment the senses

- Perceive something that no normal person can
 - "Spider sense" (a way to detect if one is in danger)
 - X-ray vision to
 - Clairvoyance
- Map the "invisible play world" onto existing senses
- Sensory augmentation, substitution, and supplementation
- Change the properties of one sensory modality into stimuli of another sensory modality

Rebane, K.; Shijo, R.; Schewe, T.; Jiang, J. & Nojima, T., Augmented Dodgeball, *Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, ACM,* **2018**, 5:1-5:5

Augment the senses

Chernyshov, G., Ragozin, K., Chen, J. and Kunze, K., Dubhap: a sensory substitution based superhuman sport. In Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities (p. 4). ACM. 2018

Sasaki, T., Liu, K.H., Hasegawa, T., Hiyama, A. and Inami, M., Virtual Super-Leaping: Immersive Extreme Jumping in VR. In Proceedings of the 10th Augmented Human International Conference 2019 (p. 18). ACM 2019.

Augment the body

- Expert athletes aim at a state of flow and "becoming one with their equipment"
- Provide equipment as a natural extension of the body
- Create wearable computing systems that "feel" integrated with the body
- Create new Superhuman Sports with body extensions

Kishishita, Y.; Ramirez, A. V.; Das, S.; Thakur, C.; Yanase, Y. & Kurita, Y., Muscleblazer: A Wearable Laser Tag Module Powered by PGM-induced Forcefeedback, Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, ACM, **2018**, 2:1-2:6

Augment the body

Saraiji, M. H. D., Sasaki, T., Kunze, K., Minamizawa, K., & Inami, M. MetaArmS: Body remapping using feet-controlled artificial arms. In The 31st Annual ACM Symposium on User Interface Software and Technology (pp. 65-74). ACM 2018.

Nabeshima, J., Saraiji, M. H. D., & Minamizawa, K. Prosthetic Tail: Artificial Anthropomorphic Tail for Extending Innate Body Functions. In Proceedings of the 10th Augmented Human International Conference 2019 (p. 36). ACM.

Augment the playing field

- Re-design existing sports by adding virtual elements
- Create new sports by creating the "impossible"
 - Challenge physics
 - Add new equipment
 - Add new opponents
- Train in a safe environment
- Make sports more interesting and enjoyable to play

Tiator, M.; Geiger, C.; Dewitz, B.; Fischer, B.; Gerhardt, L.; Nowottnik, D. & Preu, H., Vengal: Climbing in Mixed Reality, *Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, ACM*, **2018**, 9:1-9:8

Play your run!

van Zon, M.; Lukosch, S. G.; Jansen, A. J. & Greidanus, A. J., Play your run! A Superhuman sports running game in mixed reality, Science and Engineering Conference on Sports Innovation, 2017

League of Lasers

Miedema, N. A.; Vermeer, J.; Lukosch, S. G. & Bidarra, R., Superhuman sports in mixed reality: the multi-player game League of Lasers, Proceedings of the IEEE VR Workshop on Superhuman Sports, 2019

User Experience Questionnaire (UEQ)

- Measures the user experience of interactive products
- 2 antonyms at the ends of a seven step scale (e.g. annoying and enjoyable)
- Six aspects:
 - Attractiveness:
 - Overall impression of the product. Do users like or dislike it? Is it attractive, enjoyable or pleasing?
 - Perspicuity:
 - Is it easy to get familiar with the product? Is it easy to learn? Is the product easy to understand and clear?
 - Efficiency:
 - Can users solve their tasks without unnecessary effort? Is the interaction efficient and fast? Does the product react fast to user input?
 - Dependability:
 - Does the user feel in control of the interaction? Can he or she predict the system behaviour? Does the user feel safe when working with the product?
 - Stimulation:
 - Is it exciting to use the product? Is it fun to use?
 - Novelty:
 - Is the product innovative and creative? Does it capture users' attention?

Laugwitz, B.; Held, T. & Schrepp, M., Construction and Evaluation of a User Experience Questionnaire, HCI and Usability for Education and Work, 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2008, Graz, Austria, November 20-21, 2008. Proceedings, **2008**, 63-76

Results

- Augmenting senses, body or playing field
 - Encourages physical activity
 - Allows for new (sport) experiences
 - Conceived as engaging
- Keep it simple, less is more
- Foster audience participation
- (Longer-term) evaluation of engagement and human factors

CONCLUSIONS

Conclusions

- Health
 - games suitable for motor assessment
 - human augmentation needs to be adaptive and meaningful
- Safety & Security
 - human augmentation improves situational awareness
 - increases task load
 - changes work processes
- Sports
 - human augmentation encourages physical activity

Future work

- Advanced displays: high FOV, high resolution
- Equipment: light, ergonomic, ubiquitous, non-invasive
- Real-time space capture and tracking: 3D scanning, stitching, segmentation
- Multimodal interaction: natural gesture interaction, tangible interaction, speech, emotion sensing, fusion
- Embedding of virtual content in the real world
- Model and design guidelines for engagement

